Yearbooks

Programme: BSc Extended programme - Physical Sciences

Code Faculty Duration Credits Download
02130010 Faculty of Natural and Agricultural Sciences Duration of study: 4 years Total credits: 512

Admission requirements

  •  In order to register NSC/IEB/Cambridge candidates must comply with the minimum requirements for degree studies as well as the minimum requirements for the relevant study programme. 
  • Life Orientation is excluded in the calculation of the Admission Point Score (APS).
  • Grade 11 results are used for the provisional admission of prospective students.
  • Final admission is based on the Grade 12 results.

 

Minimum requirements for 2016
Achievement level
Afrikaans or English Mathematics Physical Sciences APS
NSC/IEB HIGCSE AS-Level A-Level NSC/IEB HIGCSE AS-Level A-Level NSC/IEB HIGCSE AS-Level A-Level
4 3 D D 4 3 D D 4 3 D D 26
 
NBT compulsory

 

Additional requirements

  1. Students who are admitted to one of the BSc four-year programmes register for one specific programme. Three extended programmes are available:
  • BSc (Four-year programme) – Mathematical Sciences 
  • BSc (Four-year programme) – Biological and Agricultural Sciences 
  • BSc (Four-year programme) – Physical Sciences 
  1. These programmes are followed by students who, as a result of exceptional circumstances, will benefit from an extended programme.
  2. Students who do not comply with the normal three-year BSc entrance requirements for study in the Faculty of Natural and Agricultural Sciences, may nevertheless be admitted to the Faculty by being placed on the BSc (Four-year programme). Generally the BSc (Four-year programme) means that the first study year in Mathematics, Physics, Biology and Chemistry is extended to take two years. After completing the BSc (Four-year programme) successfully, students join the second year of the normal BSc programme to complete their degrees. The possibility of switching over to other faculties such as Engineering, Built Environment and Information Technology, Veterinary Science and Health Sciences, after one or two years in the four-year programme, exists. This depends on selection rules and other conditions stipulated by the other faculties.
  3. Students who wish to follow one of the BSc four-year programmes will be subjected to an Institutional Proficiency Test  and will be considered for admission by the Admissions Committee.  Information in this regard is available at the Client Services Centre.
  4. Applications for admission to the BSc (Four-year programme) should be submitted before 30 September each year. Details are obtainable from the Student Administration at the Faculty of Natural and Agricultural Sciences.
  5. The rules and regulations applicable to the normal study programmes apply mutatis mutandis to the BSc (Four-year programme), with exceptions as indicated in the regulations pertaining to the BSc (Four-year programme). For instance, students placed in the BSc (Four-year programme) must have a National Senior Certificate with admission for degree purposes.
  6. An admissions committee considers applications for the BSc (Four-year programme) annually. Regarding subject choices, admitted students are individually placed on the BSc (Four-year programme) according to their prospective field of study. Students may NOT change this placement without the permission of the Chairperson of the admissions committee.

Other programme-specific information

Prescribed: CMY 133 Chemistry, CMY 143 Chemistry and CMY 154 Chemistry: Equivalent module – a BSc First-semester prescribed module: CMY 117.

Physics modules

For students in biological study directions: PHY 133 Physics, PHY 144 Physics and PHY 154 Physics Equivalent module: PHY 131.

For students who want to study Physical Sciences and engineering: PHY 133 Physics, PHY 143 Physics, PHY 153 Physics Equivalent module: FSK 116 (or FSK 176)

For all other students: PHY 133 Physics, PHY 143 Physics, PHY 153 Physics, PHY 163 General physics: Equivalent modules: PHY 114 and PHY 124.

Prescribed: WTW 133 Precalculus, WTW 143 Calculus and WTW 153 Calculus: Equivalent module – a BSc First-semester prescribed module: WTW 114.

For students in biological study directions: WTW 133 Precalculus, WTW 144 Mathematics and WTW 154 Mathematics: Equivalent module WTW 134 Mathematics

Prescribed: MLB 133 Molecular and cell biology, MLB 143 Molecular and cell biology, MLB 153 Molecular and cell biology: Equivalent module – a BSc First-semester prescribed module: MLB 111 Molecular and cell biology.

NB Students may register for an extended module (eg PHY 133, PHY 143, PHY 153 and PHY 163) only once.

Compulsory modules:

AIM 111 and AIM 121 Academic information management, 4 + 4 credits.

LST 133 and LST 143 Academic literacy, 8+ 8 credits.

All new students must register for the academic literacy modules LST.

 

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the alphabetical list of modules.

Promotion to next study year

Academic promotion requirements
It is expected of students who register for the first year of the BSc (Four-year programme) to pass all the prescribed modules of the first year.
It is expected of students accepted into the BSc (Four-year programme) to finish a complete corresponding BSc first year within the two years of enrolment in the BSc (Four-year programme). Students who do not show progress during the first semester of the first year will be referred to the Admissions Committee of the Faculty.

Minimum credits: 88

Fundamental modules

  • Module content:

    In this module students use different information and time management strategies, build academic vocabulary, revise basic grammar concepts and dictionary skills, examine learning styles, memory  and note-taking techniques, practise academic reading skills and explore basic research and referencing techniques, learn how to use discourse markers and construct definitions, and are introduced to paragraph writing. The work is set in the context of the students’ field of study.

    View more

  • Module content:

    In this module students learn how to interpret and use visual literacy conventions. Students write more advance paragraphs, and also learn how to structure academic writing, how to refine their use of discourse markers and referencing techniques and how to structure their own academic arguments. Students’ writing is expected to be rational, clear and concise. As a final assignment all aspects of the LST 133 and LST 143 modules are combined in a research assignment. In this project, students work in writing teams to produce a chapter on a career and to present an oral presentation of aspects of the chapter. The work is set in the context of the students’ field of study.

    View more

  • Module content:

    Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

    View more

  • Module content:

    Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

    View more

Core modules

  • Module content:

    The field of Chemistry – an overview; Mathematics in Chemistry; atomic theory: historical overview; atoms, molecules and ions; relative atomic mass; electronic structure of atoms; the periodic table; periodicity; chemical bonding.

    View more

  • Module content:

    Bonding and molecular geometry: VSEPR theory; bonding and organic compounds (structural formulas, classification and nomenclature); matter and its properties; mole concept; reaction stoichiometry; reactions in aqueous solutions: precipitation, acid base and redox.

    View more

  • Module content:

    Heat: temperature and scales, the kinetic molecular model, work, energy and heat, calorimetry, specific heat, expansion, heat transfer. Measurements: SI-units, measuring error and uncertainty, (graphs), significant figures, mathematical modelling. Geometrical optics: reflection, refraction, dispersion, mirrors, thin lenses, instruments.

    View more

  • Module content:

    Vectors. Kinematics of a point: relative motion, projectile, circular motion. Dynamics: Newton’s laws, friction. Work: point masses, ideal gas law, springs, power. Energy: kinetic energy, potential energy, conservative forces, spring, conservation of mechanical energy. Hydrostatics and dynamics: density, pressure, Archimedes' law, continuity, Bernouli.

    View more

  • Module content:

    Real numbers, elementary set notation, exponents and radicals. Algebraic expressions, fractional expressions, linear and quadratic equations, inequalities. Coordinate geometry: lines, circles. Functions: definition, notation, piecewise defined functions, domain and range, graphs, transformations of functions, symmetry, even and odd functions, combining functions, one-to-one functions and inverses, polynomial functions and zeros.
    Sequences, summation notation, arithmetic, geometric sequences, infinite geometric series, annuities and instalments. Degrees and radians, unit circle, trigonometric functions, fundamental identities, trigonometric graphs, trigonometric identities, double-angle, half-angle formulae, trigonometric equations, applications.

    This module is only offered in English at the Mamelodi Campus for the BSc Extended programme. At the Hatfield and Groenkloof campuses it is offered in English and Afrikaans.

    View more

  • Module content:

    Functions: exponential and logarithmic functions, natural exponential and logarithmic functions, exponential and logarithmic laws, exponential and logarithmic equations, compound interest. Limits: concept of a limit, finding limits numerically and graphically, finding limits algebraically, limit laws without proofs, squeeze theorem without proof, one-sided limits, infinite limits, limits at infinity, vertical, horizontal and slant asymptotes, substitution rule, continuity, laws for continuity without proofs. Differentiation: average and instantaneous change, definition of derivative, differentiation rules without proofs, derivatives of polynomials, chain rule for differentiation, derivatives of trigonometric, exponential and logarithmic functions, applications of differentiation: extreme values, critical numbers, monotone functions, first derivative test, optimisation.

    View more

Elective modules

  • Module content:

    The scientific method, the meaning of life, principles of microscopy, introduction to taxonomy  and systematics, introductory study of the structure, function and composition of akaryotes, HIV/ Aids, the immune system and other health issues, ecosystems and human interference.

    View more

  • Module content:

    Chemistry of the cell, introduction to the structure, function and composition of prokaryotic and eukaryotic cells, energy and cellular metabolism, photosynthesis.

    View more

  • Module content:

    Descriptive statistics – Univariate:
    The role of Statistics, various types of data. Sampling, probability and non-probability sampling techniques and the collection of data. Frequency, relative and cumulative distributions and graphical representations. Additional concepts relating to data processing: sigma notation, factorial notation. Descriptive measures of location,dispersion and symmetry. Exploratory data analysis.
    Probability:
    Introductory probability theory and applications. Set theory and probability laws. Introduction to random variables. Assigning probabilities, probability distributions, expected value and variance in general. Specific discrete probability distributions (Uniform, Binomial).  Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

  • Module content:

    Probability and inference:
    Probability theory and theoretical distributions for continuous random variables (Uniform, Normal and t). Sampling distributions (means and proportions). Estimation theory and hypothesis testing of sampling averages and proportions (one- and two-sample cases).
    Optimisation techniques with economic applications:
    Applications of differentiation in statistic and economic related problems. Integration. Applications of integration in statistic and economic related problems. Systems of equations in equilibrium. The area under a curve and applications of definite integrals in Statistics and Economics. Report writing and presentation. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.

    View more

Minimum credits: 24

Core modules

  • Module content:

    Principles of reactivity: energy and chemical reactions. Physical behaviour of gasses, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to Chemical kinetics. Introduction to chemical equilibrium. Introduction to organic chemistry: hybridisation, isomers (structural, geometrical and conformational), additions reactions and reaction mechanisms.

    View more

  • Module content:

    System of particles: centre of mass, Newton's laws. Rotation: torque, conservation of momentum, impulse and collision, conservation of angular momentum, equilibrium, centre of gravity. Oscillations. Waves: sound, intensity, superposition, interference, standing waves, resonance, beats, Doppler effect. Physical optics: Young-interference, coherence, thin layers, diffraction, gratings, polarisation.

    View more

  • Module content:

    Differential calculus of a single variable with proofs and applications. The mean value theorem, the rule of L'Hospital. Upper and lower sums, definite and indefinite integrals, the Fundamental theorem of Calculus, the mean value theorem for integrals, integration techniques, with some proofs.

    View more

Elective modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Physical behaviour of gases, liquids and solids, intermolecular forces, solutions. Principles of reactivity: energy and chemical reactions, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and amino acids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

    View more

  • Module content:

    Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

    View more

  • Module content:

    Principles of stratigraphy and stratigraphic nomenclature; geological dating and international and South African time scales; Africa framework and tectonic elements of South Africa; introduction to depositional environments. Overview of the historical geology of South Africa, from the Archaean to the present: major stratigraphic units, intrusions and tectonicmetamorphic events - their rock types, fossil contents, genesis and economic commodities. Principles of palaeontology and short description of major fossil groups: fossil forms, ecology and geological meaning. Geological maps and profiles; rock samples.

    View more

  • Module content:

    Hazardous exogenic and endogenic geological processes and their influence on the human environment; impact of human activities on the geological environment; natural resource utilisation including materials for construction; natural and mine-induced seismicity; waste disposal; groundwater and environmental pollution. Geological maps; geological profiles; rock specimens; fossil specimens.

    View more

  • Module content:

    History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics).

    View more

  • Module content:

    Introduction to information systems, information systems in organisations, hardware: input, processing, output, software: systems and application software, organisation of data and information, telecommunications and networks, the Internet and Intranet. Transaction processing systems, management information systems, decision support systems, information systems in business and society, systems analysis, systems design, implementation, maintenance and revision.

    View more

  • Module content:

    Introduction to programming.

    View more

  • Module content:

    Advanced programming, use of a computer-aided software engineering tool.

    View more

  • Module content:

    Cell growth and cell division, Mendelian and human genetics, principles of molecular genetics, principles of recombinant DNA technology and its application.

    View more

  • Module content:

    The content of this course is the same as SCI 164 and students are not allowed to register for both SCI 154 and SCI 164.
    Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind’s modest position therein. To what degree is our happiness determined by stars? Echo's from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe – distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.

    View more

  • Module content:

    *This module is presented in Afrikaans only. See SCI 154 for a summary of the module content. The content of this module is the same as SCI 154 and students are not allowed to register for both SCI 154 and SCI 164.
    Studente uit alle fakulteite is welkom om saam met ons die heelal vanuit ’n aardgebonde perspektief te verken. Ons besin oor die ganse kosmos van die submikroskopiese tot die asemrowende, uitgestrekte makroskopiese en die mens se beskeie posisie daarin. Tot watter mate bepaal sterre ons lewensgeluk? Eggo's van antieke uitspansels – die sterrekunde van vervloeë beskawings. Die heelal word gebore met ’n knal. Sterre, die Melkweg en planete word gevorm. Lewe word in die aardse landskap geplaas, maar is daar lewe elders? Die agitektuur van die heelal – afstandmetings, struktuur van ons sonnestelsel en sterrestelsels. Hoe lyk ons buurplanete? Komete en meteoriete. Lewenssiklusse van sterre. Ontploffende sterre. Eksotiese voorwerpe soos pulsare en swart gate.

    View more

  • Module content:

    Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.

    View more

  • Module content:

    An introduction to the climate and general seasonal climatic circulation patterns of Southern Africa. Basic weather types and weather processes within the Southern African context. Interpretation of synoptic maps and synoptic station reports. Impacts of climate change and extreme climate events on society.
    *BSc (Geography) and BSc (Environmental Sciences) students may register for WKD 155. Students are not allowed to earn credits for both WKD 155 and WKD 164.

    View more

  • Module content:

    Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

    View more

  • Module content:

    Introduction to the modelling of dynamical processes using difference equations. Curve fitting. Introduction to linear programming. Matlab programming. Applications to real-life situations in, among others, finance, economics and ecology.

    View more

  • Module content:

    *This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
    Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.

    View more

  • Module content:

    The importance of geographical data and an overview of geoinformatics. Cartographic analysis to geoinformatics – a historical perspective. Application fields of geoinformatics. Introduction to geographical information systems (GIS): Components, structure and functionality, GIS visualisation and cartography. Data sources and evaluation: fitness for purpose, factors affecting suitability, quality and uncertainty, sources of analogue and digital data. Map projection choice. Analysis of GIS output.

    View more

  • Module content:

    Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, physical and human environment, human induced environmental problems, the ways in which the natural environment affects human society and biodiversity, an introduction to major environmental issues in Southern Africa and sustainable development in the context of environmental issues.

    View more

  • Module content:

    Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens.

    View more

  • Module content:

    Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

    View more

  • Module content:

    *Students are not allowed to earn credits for WKD 155 and WKD 164

    Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

    View more

  • Module content:

    General systems theory, creative problem solving, soft systems methodology. The systems analyst, systems development building blocks, systems development, systems analysis methods, process modelling.

    View more

Minimum credits: 24

Core modules

  • Module content:

    Principles of reactivity: energy and chemical reactions. Physical behaviour of gasses, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to Chemical kinetics. Introduction to chemical equilibrium. Introduction to organic chemistry: hybridisation, isomers (structural, geometrical and conformational), additions reactions and reaction mechanisms.

    View more

  • Module content:

    System of particles: centre of mass, Newton's laws. Rotation: torque, conservation of momentum, impulse and collision, conservation of angular momentum, equilibrium, centre of gravity. Oscillations. Waves: sound, intensity, superposition, interference, standing waves, resonance, beats, Doppler effect. Physical optics: Young-interference, coherence, thin layers, diffraction, gratings, polarisation.

    View more

  • Module content:

    Differential calculus of a single variable with proofs and applications. The mean value theorem, the rule of L'Hospital. Upper and lower sums, definite and indefinite integrals, the Fundamental theorem of Calculus, the mean value theorem for integrals, integration techniques, with some proofs.

    View more

Elective modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Physical behaviour of gases, liquids and solids, intermolecular forces, solutions. Principles of reactivity: energy and chemical reactions, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and amino acids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

    View more

  • Module content:

    Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

    View more

  • Module content:

    Principles of stratigraphy and stratigraphic nomenclature; geological dating and international and South African time scales; Africa framework and tectonic elements of South Africa; introduction to depositional environments. Overview of the historical geology of South Africa, from the Archaean to the present: major stratigraphic units, intrusions and tectonicmetamorphic events - their rock types, fossil contents, genesis and economic commodities. Principles of palaeontology and short description of major fossil groups: fossil forms, ecology and geological meaning. Geological maps and profiles; rock samples.

    View more

  • Module content:

    Hazardous exogenic and endogenic geological processes and their influence on the human environment; impact of human activities on the geological environment; natural resource utilisation including materials for construction; natural and mine-induced seismicity; waste disposal; groundwater and environmental pollution. Geological maps; geological profiles; rock specimens; fossil specimens.

    View more

  • Module content:

    History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics).

    View more

  • Module content:

    Introduction to information systems, information systems in organisations, hardware: input, processing, output, software: systems and application software, organisation of data and information, telecommunications and networks, the Internet and Intranet. Transaction processing systems, management information systems, decision support systems, information systems in business and society, systems analysis, systems design, implementation, maintenance and revision.

    View more

  • Module content:

    Introduction to programming.

    View more

  • Module content:

    Advanced programming, use of a computer-aided software engineering tool.

    View more

  • Module content:

    Cell growth and cell division, Mendelian and human genetics, principles of molecular genetics, principles of recombinant DNA technology and its application.

    View more

  • Module content:

    The content of this course is the same as SCI 164 and students are not allowed to register for both SCI 154 and SCI 164.
    Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind’s modest position therein. To what degree is our happiness determined by stars? Echo's from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe – distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.

    View more

  • Module content:

    *This module is presented in Afrikaans only. See SCI 154 for a summary of the module content. The content of this module is the same as SCI 154 and students are not allowed to register for both SCI 154 and SCI 164.
    Studente uit alle fakulteite is welkom om saam met ons die heelal vanuit ’n aardgebonde perspektief te verken. Ons besin oor die ganse kosmos van die submikroskopiese tot die asemrowende, uitgestrekte makroskopiese en die mens se beskeie posisie daarin. Tot watter mate bepaal sterre ons lewensgeluk? Eggo's van antieke uitspansels – die sterrekunde van vervloeë beskawings. Die heelal word gebore met ’n knal. Sterre, die Melkweg en planete word gevorm. Lewe word in die aardse landskap geplaas, maar is daar lewe elders? Die agitektuur van die heelal – afstandmetings, struktuur van ons sonnestelsel en sterrestelsels. Hoe lyk ons buurplanete? Komete en meteoriete. Lewenssiklusse van sterre. Ontploffende sterre. Eksotiese voorwerpe soos pulsare en swart gate.

    View more

  • Module content:

    Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.

    View more

  • Module content:

    An introduction to the climate and general seasonal climatic circulation patterns of Southern Africa. Basic weather types and weather processes within the Southern African context. Interpretation of synoptic maps and synoptic station reports. Impacts of climate change and extreme climate events on society.
    *BSc (Geography) and BSc (Environmental Sciences) students may register for WKD 155. Students are not allowed to earn credits for both WKD 155 and WKD 164.

    View more

  • Module content:

    Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

    View more

  • Module content:

    Introduction to the modelling of dynamical processes using difference equations. Curve fitting. Introduction to linear programming. Matlab programming. Applications to real-life situations in, among others, finance, economics and ecology.

    View more

  • Module content:

    *This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
    Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.

    View more

  • Module content:

    The importance of geographical data and an overview of geoinformatics. Cartographic analysis to geoinformatics – a historical perspective. Application fields of geoinformatics. Introduction to geographical information systems (GIS): Components, structure and functionality, GIS visualisation and cartography. Data sources and evaluation: fitness for purpose, factors affecting suitability, quality and uncertainty, sources of analogue and digital data. Map projection choice. Analysis of GIS output.

    View more

  • Module content:

    Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, physical and human environment, human induced environmental problems, the ways in which the natural environment affects human society and biodiversity, an introduction to major environmental issues in Southern Africa and sustainable development in the context of environmental issues.

    View more

  • Module content:

    Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens.

    View more

  • Module content:

    Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

    View more

  • Module content:

    *Students are not allowed to earn credits for WKD 155 and WKD 164

    Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

    View more

  • Module content:

    General systems theory, creative problem solving, soft systems methodology. The systems analyst, systems development building blocks, systems development, systems analysis methods, process modelling.

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of each student to familiarise himself or herself well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2019. All rights reserved.

FAQ's Email Us Virtual Campus Share