Yearbooks

Programme: BSc Environmental Sciences

Code NQF level Faculty Duration Credits
02133362 NQF level:  07 Faculty of Natural and Agricultural Sciences Minimum duration of study: 3 years Total credits: 422

Admission requirements

  • The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement, a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution, and a candidate who is a graduate of another faculty at the University of Pretoria.
  • Life Orientation is excluded in the calculation of the Admission Point Score (APS).
  • Grade 11 results are used for the conditional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science 

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

5

C

5

C

5

C

34

*  Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

Candidates who do not comply with the minimum admission requirements for BSc (Environmental Sciences), may be considered for admission to the BSc – Extended programme – Physical Sciences. This programme takes a year longer than the normal programmes to complete.

BSc – Extended Programme – Physical Sciences

 Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science  

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

4

D

4

D

4

D

28

 

Other programme-specific information

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the relevant head of department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the relevant head of department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.

  • A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
  • A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
  • Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
  • Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed in writing.
  • Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senate Appeals Committee.
  • Any decision taken by the Senate Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Minimum credits: 142

Fundamental =    12

Core             =   130

Additional information:

Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Students can take WTW 114 instead of WTW 134 if they meet the entry requirement.

No elective credits are required.

Fundamental modules

Core modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

    View more

  • Module content:

    General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, covering an introduction to environmental science and biogeography; including a first introduction to SDGs and Aichi targets.

    View more

  • Module content:

    This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

    View more

  • Module content:

    Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

    View more

  • Module content:

    History, present and future of cartography. Introductory geodesy: shape of the earth, graticule and grids, datum definition, elementary map projection theory, spherical calculations. Representation of geographical data on maps: Cartographic design, cartographic abstraction, levels of measurement and visual variables. Semiotics for cartography: signs, sign systems, map semantics and syntactics, explicit and implicit meaning of maps (map pragmatics). Critique maps of indicators to measure United Nations Sustainable Development Goals in South Africa.

    View more

  • Module content:

     Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

    View more

  • Module content:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. 
    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

    View more

  • Module content:

    Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
    respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).

    View more

Minimum credits: 138

Core             =    98

Elective         =   40

Additional information:

Students must select elective modules with a total number of at least 40 credits.

Students who do not intend to continue with Mathematics on third year level may replace WTW 220 with WTW 224

Depending on a student’s second major and other interests, the following modules are recommended:

  • Ecology as a field of interest: PPK 251, GMA 220, LEK 210 (Credits 41)
  • Geography as second major: GMA 220, GGY 201, GIS 220, (Credits 40)
  • Geoinformatics as a field of interest: GMA 220, GIS 220 (Credits 28)

Core modules

  • Module content:

    Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.

    View more

  • Module content:

    Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing abiotic stress tolerant and disease resistant plants. Practicals: Basic laboratory skills in plant physiology; techniques used to investigate nitrogen metabolism, carbohydrate metabolism, pigment analysis, water transport in plant tissue and response of plants to hormone treatments. 

    View more

  • Module content:

    Introduces basic concepts and interrelationships required to understand our atmosphere, with a strong focus on an introduction to weather and climate. A key component of the course is an introduction to climate change, including the science of climate change, introducing climate change projections, and climate change impacts. A key focus of the second part of the course will be climate change implications for the attainment of SDGs and Aichi targets on the African continent, under a range of plausible scenarios.

    View more

  • Module content:

    Physical processes that influence the earth’s surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and periglacial processes. Practical laboratory exercises and assignments are based on the themes covered in the module theory component.

    View more

  • Module content:

    Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies. This module provides the foundations for more advanced GIS and Geoinformatics topics. Practical assessments and a mini-project make use of South African and African examples and foster learning and application of concepts aligned to the UN Sustainable Development Goals.

    View more

  • Module content:

    Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

    View more

  • Module content:

    Origin and extent of modern invertebrate diversity; parasites of man and domestic animals; biology and medical importance of arachnids and insects; insect life styles; the influence of the environment on insect life histories; insect herbivory; predation and parasitism; insect chemical, visual, and auditory communication. Examples used in the module are relevant to the sustainable development goals of Life on Land and Good Health and Well-being.

    View more

  • Module content:

    Introduction to general vertebrate diversity; African vertebrate diversity; vertebrate structure and function; vertebrate evolution; vertebrate relationships; aquatic vertebrates; terrestrial ectotherms; terrestrial endotherms; vertebrate characteristics; classification; structural adaptations; habits; habitats; conservation problems; impact of humans on other vertebrates. The module addresses the sustainable development goals of Life below Water and Life on Land.

    View more

Elective modules

  • Module content:

    The module introduces students to urban settlement patterns, processes and structures. Using a series of case studies, it aims to develop an understanding of the challenges facing urban areas both in South Africa and globally.

    View more

  • Module content:

    The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis. Examples used throughout the course are drawn from South African and African case studies and taught within the framework of the UN Sustainable Development Goals.

    View more

  • Module content:

    This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.

    View more

  • Module content:

    Introduction to financial management in agriculture: Farm management and agricultural finance, farm management information; analysis and interpretation of farm financial statements; risk and farm planning. Budgets: partial, break-even, enterprise, total, cash flow and capital budgets. Time value of money. Introduction to production and resource use: the agricultural production function, total physical product curve, marginal physical product curve, average physical product curve, stages of production. Assessing short-term business costs; Economics of short-term decisions. Economics of input substitution: Least-cost use of inputs for a given output, short-term least-cost input use, effects of input price changes. Least-cost input use for a given budget. Economics of product substitution. Product combinations for maximum profit. Economics of crop and animal production.

    View more

  • Module content:

    Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.

    View more

  • Module content:

    Conservative forces and conservation laws. Basic thermodynamic laws for dry and humid air. The equation of state. Adiabatic processes and temperature lapse rates. The Clausuis-Claperon equation. Calculation of the wet adiabat. Radiative transfer. The physical basis of climate change.

    View more

  • Module content:

    *This module does not lead to admission to WTW 310 or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
    Sequences of real numbers: convergence and monotone sequences. Series of real numbers: convergence, integral test, comparison tests, alternating series, absolute convergence, ratio and root tests. Power series: representation of functions as power series, Taylor and Maclaurin series. Application to series solutions of differential equations. 

    View more

Minimum credits: 142

Core             =    36

Elective         =   106

Students must select elective modules with a total number of at least 106 credits. 

  • Ecology as a field of interest: GIS 310, BOT 358, BOT 366, ZEN 351, ZEN 353, ZEN 362, ZEN 364 (Credits 112)
  • Geography as a second major: GMA 320, GGY 301, (Credits 40)
  • Geoinformatics as a field of interest: GIS 310, GIS 320, GMA 320 (66 Credits)

Core modules

  • Module content:

    The module serves as an introduction to human-environment relations, on contemporary environmental issues in Africa. 
    The module begins with different theories and schools of thought in human-environment relations, followed by recent and future impacts of human pressures on natural resources, the state of the environment in South Africa, management of critical resources, population trends, biodiversity loss, pollution, water scarcity, desertification, climate change, waste accumulation and management, environmental management tools, environmental education and environmental management legislation. A key focus here is future scenarios for the African continent in terms of SDGs and Aichi targets; given current and projected driving forces.

    View more

  • Module content:

    *Note: The module is available for BSc (Geography) and BSc (Environmental Sciences) students only. The theory content of this module is the same as GGY 363 and students are not allowed to earn credits for both GGY 361 and GGY 363.


    Interactions of geomorphic processes within the physical and built environments; themes such as geomorphology and environmental change, slope processes and the environment, geomorphic risks and hazards, soil erosion and conservation, geomorphology in environmental management, applied weathering. Practicals involve fieldwork including sampling and mapping and subsequent laboratory analysis.

    View more

Elective modules

  • Module content:

     Theory of plant community concepts, floristic and structural composition, plant diversity, ecological succession, landscape ecology. Data processing techniques. Species interactions and an evaluation of their effects on interacting species. Fundamentals of plant population biology: life tables; plant breeding systems and pollination; population dynamics; life history strategies; intraspecific competition; interspecific competition and co-existence.

    View more

  • Module content:

    Basic principles and methods of plant classification. Sources of plant variation. Modern methods to ascertain evolutionary relationships among plants. The extent and significance of vascular plant diversity. General structural and biological characteristics of evolutionary and ecologically important plant groups. Botanical nomenclature. Plant identification in practice; identification methods, keys, herbaria and botanical gardens. Diagnostic characters for the field identification of trees, wild flowers and grasses. Family recognition of southern African plants. Available literature for plant identification. Methods to conduct floristic surveys. Nature and significance of voucher specimens.

    View more

  • Module content:

    Classic economic development theories and frameworks. Spatial development history and legacy in South Africa. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks. Integration of environmental, economic, and social components of sustainable development, including challenges, actors and actions in sustainable development.

    View more

  • Module content:

    Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours. Diverse South African examples will be used to expose the students to various data sources, geospatial analyses, and data representation to support the UN Sustainable Development Goals.

    View more

  • Module content:

    Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models. Examples using data from South Africa are implemented. A project or assignment of at least 64 notional hours.

    View more

  • Module content:

    A taxonomic system for South Africa. USDA’s Soil Taxonomy. Land suitability evaluation. Optimal resource utilization. The conservation component. Ecological aspects. Ecotype, land types. Soil maps. Practical work: Field practicals and compulsory excursion. Identification of soil horizons, forms and families. Land suitability evaluation. Elementary mapping exercise.

    View more

  • Module content:

    This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, practical exercises research tasks and a project or assignments of at least 64 notional hours. In particular, the practical exercises and research tasks incorporate South African examples using satellite remotely-sensed data, as well as field spectral data measurements, to promote understanding of the state of land cover and land use types (e.g. spanning agricultural resources, water resources, urbanization) and how changes over time could impact on the changing climate in accordance with the United Nation’s Sustainable Development Goals.

    View more

  • Module content:

    Scientific approach to ecology; evolution and ecology; the individual and its environment; population characteristics and demography; competition; predation; plant-herbivore interactions; regulation of populations; population manipulation, human population. Examples throughout the module are relevant to the sustainable development goals of Life on Land and Good Health and Well-being.

    View more

  • Module content:

    The scientific approach; characteristics of the community; the community as a superorganism; community changes; competition as a factor determining community structure; disturbance as a determinant of community structure; community stability; macroecological environmental gradients and communities. A field trip will be conducted during the September vacation to the Sani Pass region of the Maloti- Drakensberg Mountains. The module addresses the sustainable development goals Good Health and Well-being, Sustainable Cities and Communities, Climate Action and Life on Land.

    View more

  • Module content:

    The history of behavioural ecology. A causal, developmental, evolutionary and adaptive approach. Sensory systems and communication. Sexual selection, mate choice and sperm competition. Kin selection and group living. Special reference to social insects. The behavioural ecology of humans. Phylogenetic basis of behavioural analysis. The role of behavioural ecology in conservation planning. The module covers sustainable development goals 1-10 and 12-15.

    View more

  • Module content:

    This module is intended to provide students with the skills and knowledge that are essential for the conservation of biodiversity. The module focuses on conservation theory and practice (e.g. endangered species, habitat loss, overexploitation, climate change), and has a practical component. In addition, students will generate a multi-media project designed to inform the general public about a key conservation issue.Over the course of the module, students will be exposed to a number of issues that link directly to sustainable development goals Clean Water and Sanitation, Affordable and Clean Energy, Sustainable Cities and Communities, Responsible Consumption and Production, Climate Action, Life Below Water & Life on Land, and gain valuable theoretical and practical experience in the field of conservation biology. 

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of each student to familiarise himself or herself well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2020. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences