Yearbooks

Programme: BSc Extended programme - Biological and Agricultural Sciences

Code Faculty Duration Credits Download
02130014 Faculty of Natural and Agricultural Sciences Duration of study: 4 years Total credits: 152

Admission requirements

Candidates who do not comply with the minimum admission requirements of programmes in the Department of Biological Sciences, may be considered for admission to the BSc – Extended programme for the Biological and Agricultural Sciences. The BSc – Extended programme takes place over a period of four years instead of the normal three years.

 

Minimum requirements for 2017

Achievement level

Afrikaans or English

Mathematics

Physical Sciences

APS

NSC/IEB

HIGCSE

AS-Level

A-Level

NSC/IEB

HIGCSE

AS-Level

A-Level

NSC/IEB

HIGCSE

AS-Level

A-Level

4

3

D

D

4

3

D

D

4

3

D

D

24

Additional requirements

  1. Students who are admitted to one of the BSc four-year programmes register for one specific programme. Three extended programmes are available:
  • BSc (Four-year programme) – Mathematical Sciences 
  • BSc (Four-year programme) – Biological and Agricultural Sciences 
  • BSc (Four-year programme) – Physical Sciences 
  1. These programmes are followed by students who, as a result of exceptional circumstances, will benefit from an extended programme.
  2. Students who do not comply with the normal three-year BSc entrance requirements for study in the Faculty of Natural and Agricultural Sciences, may nevertheless be admitted to the Faculty by being placed on the BSc (Four-year programme). Generally the BSc (Four-year programme) means that the first study year in Mathematics, Physics, Biology and Chemistry is extended to take two years. After completing the BSc (Four-year programme) successfully, students join the second year of the normal BSc programme to complete their degrees. The possibility of switching over to other faculties such as Engineering, Built Environment and Information Technology, Veterinary Science and Health Sciences, after one or two years in the four-year programme, exists. This depends on selection rules and other conditions stipulated by the other faculties.
  3. Students who wish to follow one of the BSc four-year programmes will be subjected to an Institutional Proficiency Test  and will be considered for admission by the Admissions Committee.  Information in this regard is available at the Client Services Centre.
  4. Applications for admission to the BSc (Four-year programme) should be submitted before 30 September each year. Details are obtainable from the Student Administration at the Faculty of Natural and Agricultural Sciences.
  5. The rules and regulations applicable to the normal study programmes apply mutatis mutandis to the BSc (Four-year programme), with exceptions as indicated in the regulations pertaining to the BSc (Four-year programme). For instance, students placed in the BSc (Four-year programme) must have a National Senior Certificate with admission for degree purposes.
  6. An admissions committee considers applications for the BSc (Four-year programme) annually. Regarding subject choices, admitted students are individually placed on the BSc (Four-year programme) according to their prospective field of study. Students may NOT change this placement without the permission of the Chairperson of the admissions committee.

Other programme-specific information

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the alphabetical list of modules.

Promotion to next study year

Academic promotion requirements
It is expected of students who register for the first year of the BSc (Four-year programme) to pass all the prescribed modules of the first year.
It is expected of students accepted into the BSc (Four-year programme) to finish a complete corresponding BSc first year within the two years of enrolment in the BSc (Four-year programme). Students who do not show progress during the first semester of the first year will be referred to the Admissions Committee of the Faculty.

Minimum credits: 88

Minimum credits:

Fundamental =   24

Core             =   64

NB Students may register for an extended programme module only once.

 

Fundamental modules

  • Module content:

    In this module students use different information and time management strategies, build academic vocabulary, revise basic grammar concepts and dictionary skills, examine learning styles, memory  and note-taking techniques, practise academic reading skills and explore basic research and referencing techniques, learn how to use discourse markers and construct definitions, and are introduced to paragraph writing. The work is set in the context of the students’ field of study.

    View more

  • Module content:

    In this module students learn how to interpret and use visual literacy conventions. Students write more advance paragraphs, and also learn how to structure academic writing, how to refine their use of discourse markers and referencing techniques and how to structure their own academic arguments. Students’ writing is expected to be rational, clear and concise. As a final assignment all aspects of the LST 133 and LST 143 modules are combined in a research assignment. In this project, students work in writing teams to produce a chapter on a career and to present an oral presentation of aspects of the chapter. The work is set in the context of the students’ field of study.

    View more

  • Module content:

    Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

    View more

  • Module content:

    Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

    View more

Core modules

  • Module content:

    The field of Chemistry – an overview; Mathematics in Chemistry; atomic theory: historical overview; atoms, molecules and ions; relative atomic mass; electronic structure of atoms; the periodic table; periodicity; chemical bonding.

    View more

  • Module content:

    Bonding and molecular geometry: VSEPR theory; bonding and organic compounds (structural formulas, classification and nomenclature); matter and its properties; mole concept; reaction stoichiometry; reactions in aqueous solutions: precipitation, acid base and redox.

    View more

  • Module content:

    The scientific method, the meaning of life, principles of microscopy, introduction to taxonomy  and systematics, introductory study of the structure, function and composition of akaryotes, HIV/ Aids, the immune system and other health issues, ecosystems and human interference.

    View more

  • Module content:

    Chemistry of the cell, introduction to the structure, function and composition of prokaryotic and eukaryotic cells, energy and cellular metabolism, photosynthesis.

    View more

  • Module content:

    Heat: temperature and scales, work, energy and heat, calorimetry, specific heat, expansion, heat transfer. Measurements: SI-units, measuring error and uncertainty, (graphs), significant figures, mathematical modelling.One-dimensional kinematics. Geometrical optics: reflection, refraction, dispersion, mirrors, thin lenses.

    View more

  • Module content:

    Real numbers, elementary set notation, exponents and radicals. Algebraic expressions, fractional expressions, linear and quadratic equations, inequalities. Coordinate geometry: lines, circles. Functions: definition, notation, piecewise defined functions, domain and range, graphs, transformations of functions, symmetry, even and odd functions, combining functions, one-to-one functions and inverses, polynomial functions and zeros.
    Sequences, summation notation, arithmetic, geometric sequences, infinite geometric series, annuities and instalments. Degrees and radians, unit circle, trigonometric functions, fundamental identities, trigonometric graphs, trigonometric identities, double-angle, half-angle formulae, trigonometric equations, applications.

    This module is only offered in English at the Mamelodi Campus for the BSc Extended programme. At the Hatfield and Groenkloof campuses it is offered in English and Afrikaans.

    View more

  • Module content:

    Functions: Rate of change, exponential functions, the natural logarithm, exponential growth and decay, proportionality, power functions, fitting formulas to data. Rates of change and the derivative: Instantaneous rate of change, the derivative function, interpretations of the derivative, the second derivative.
    Differentiation: Formulas and rules, applications, extremes of a function. All topics are studied in the context of applications.

    View more

  • Module content:

    The main topics covered in this module are Mechanics and Thermodynamics. Kinematics: Basic types of motion, one-dimensional motion, two- and three dimensional motion, linear momentum and its conservation, multi-object systems and the centre of mass.
    Forces: Types of forces, Newton's Laws of Mechanics and applications, friction.
    Energy: Work, heat, conservation of mechanical energy.
    Thermodynamics: First law of thermodynamics, empirical gas laws, mechanical model of the ideal gas, energy of the ideal gas, basic thermodynamic processes.

    View more

Minimum credits: 32

Minimum credits:

Core             =   32

Elective         =  According to BSc programme of choice

Additional information:

NB Students may register for an extended module only once.

With regard to the rest of the third-semester modules(second year, first semester) and the second-semester, prescribed modules must be selected from the normal BSc programme of the student’s choice.

Equivelent modules:

Chemistry extended modules: CMY 133, CMY 143 and CMY 154: Equivelent to BSc module CMY 117

Molecular and cell biology extended modules: MLB 133, MLB 143 and MLB 153: Equivelent to BSc module MLB 111

Physics extended modules: PHY 133, PHY 143 and PHY 154: Equivelent to BSc module PHY 131

Mathematics extended modules: WTW 133, WTW 143 and WTW 154: Equivelent to BSc module WTW 134

 

 

Core modules

  • Module content:

    Principles of reactivity: energy and chemical reactions. Physical behaviour of gasses, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to Chemical kinetics. Introduction to chemical equilibrium. Introduction to organic chemistry: hybridisation, isomers (structural, geometrical and conformational), additions reactions and reaction mechanisms.

    View more

  • Module content:

    Cell growth and cell division, Mendelian and human genetics, principles of molecular genetics, principles of recombinant DNA technology and its application.

    View more

  • Module content:

    The main topic in this module is Electricity, Sound, Optics, and Modern Physics.
    Static Electricity: Electric charge and force, electric field, the electric energy, electric potential, conservation of electrical energy.
    Flow of charge: Capacitors, application of charge flow to nerves.
    Sound: Vibrations, waves in unconfined and confined media, applications to human hearing.
    Optics: Reflection, refraction, applications to optometry and ophthalmology.
    Atomic physics: Atomic models, x-rays.
    Nuclear physics: The stable atomic nucleus, radioactivity, nuclear spin and applications to medical diagnostics.

    View more

  • Module content:

    Integration: Accumulated change, the definite integral, anti-derivatives, the definite integral as an area, interpretations of the definite integral.
    Matrices and systems of linear equations: Matrix addition and scalar multiplication, matrix multiplication, systems of linear equations. All topics are studied in the context of applications.

    View more

Elective modules

  • Module content:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    View more

  • Module content:

    Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

    View more

  • Module content:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    View more

  • Module content:

    This is a broad introduction to the philosophy and history of science. Examples of themes and historical periods which are covered include: world views in ancient Greece; Socrates; Plato – the founder of Western thought; Aristotle – the foundation of a new tradition; Leonardo da Vinci; the foundation of modern science; the wonder years of the seventeenth century – the flourishing of the sciences and philosophy; the rising of mechanization; a drastic turn in man's vision – the rise of psychology; how the theory of relativity changed our view of the cosmos; quantum theory and its implications for the modern world view; the biological sciences and the secrets of life; the rise and role of psychology; the neuro-sciences; the place, role and benefit of philosophical thought in the sciences.

    View more

  • Module content:

    The nature and function of accounting; the development of accounting; financial position; financial result; the recording process; processing of accounting data; treatment of VAT; elementary income statement and balance sheet; flow of documents; accounting systems; introduction to internal control and internal control measures; bank reconciliations; control accounts; adjustments; financial statements of a sole proprietorship; the accounting framework.

    View more

  • Module content:

    Property, plant and equipment; intangible assets; inventories; liabilities; presentation of financial statements; enterprises without profit motive; partnerships; companies; close corporations; cash flow statements; analysis and interpretation of financial statements.

    View more

  • Module content:

    Introduction (terminology and anatomical orientation); chemical principles; cytology and histology; neuro-physiology and the senses; haematology and body fluids; cardiovascular system.

    View more

  • Module content:

    Respiratory system; nutrition; digestion and metabolism; kidneys and acid-base equilibrium; endocrinology; reproduction physiology and reproduction; skin and body temperatures.

    View more

  • Module content:

    Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions and epistasis. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Extranuclear inheritance. Genetic linkage and chromosome mapping. Chromosome variation.

    View more

  • Module content:

    The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

    View more

  • Module content:

    This module is a general orientation to Psychology. An introduction is given to various theoretical approaches in Psychology, and the development of Psychology as a science is discussed. Selected themes from everyday life are explored and integrated with psychological principles. This module focuses on major personality theories. An introduction is given to various paradigmatic approaches in Psychology.

    View more

  • Module content:

    This module introduces the student to a basic knowledge and understanding of the biological basis of human behaviour. The module addresses the key concepts and terminology related to the biological subsystem, the rules and principles guiding biological psychology, and identification of the interrelatedness of different biological systems and subsystems. In this module various cognitive processes are studied, including perception, memory, thinking, intelligence and creativity. Illustrations are given of various thinking processes, such as problem solving, critical, analytic and integrative thinking.

    View more

  • Module content:

    Animal classification, phylogeny, organization and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive, respiratory, excretory, circulatory and digestive systems.

    View more

  • Module content:

    Module 1:  Principles and practices of food preparation  and cooking techniques. Mise en place, weighing and measurement techniques, equipment and terminology as applied in food preparation. Basic food quality control.
    Module 2: Food preparation basics of the following: starches and cereals

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of each student to familiarise himself or herself well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2019. All rights reserved.

FAQ's Email Us Virtual Campus Share