Yearbooks

Programme: BScHons Mathematics

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty Department
02240182 Faculty of Natural and Agricultural Sciences Department: Mathematics and Applied Mathematics
Credits Duration NQF level
Minimum duration of study: 1 year Total credits: 135 NQF level:  08

Admission requirements

  1. BSc (Mathematics) degree or BSc (Applied Mathematics) degree or relevant bachelor’s degree
  2. At least 60% for all mathematics and applied mathematics modules at final-year level
  3. A minimum of 60% for each of the following subjects/modules (or equivalent) at final-year level:
  • Real analysis
  • Algebra

Promotion to next study year

The progress of all honours candidates is monitored biannually by the postgraduate coordinator/head of department. A candidate’s study may be terminated if the progress is unsatisfactory or if the candidate is unable to finish his/her studies during the prescribed period.

Minimum credits: 135

Stream 1: Applied analysis
Core credits: 75 credits
Elective credits: 60 credits


Stream 2: Differential equations and modelling
Core credits: 135 credits

Core modules

  • Module content:

    An introduction to the basic mathematical objects of linear functional analysis will be presented. These include metric spaces, Hilbert spaces and Banach spaces. Subspaces, linear operators and functionals will be discussed in detail. The fundamental theorems for normed spaces: The Hahn-Banach theorem, Banach-Steinhaus theorem, open mapping theorem and closed graph theorem. Hilbert space theory: Riesz' theorem, the basics of projections and orthonormal sets.

    View more

  • Module content:

    Axiomatic set theory, ordinals, transfinite induction and recursion, ordinal arithmetic, the axiom of choice, cardinal arithmetic, the continuum hypothesis. Propositional and first order logic. The completeness and compactness theorems. Decidability, Gödel’s incompleteness theorems.

    View more

  • Module content:

    The following topics will be covered: Galois theory and solving equations by radicals, introduction to the theory of R-modules, direct sums and products, projectivity and injectivity, finitely generated modules over Euclidean domains, primary factorisation, applications to Jordan and rational canonical forms of matrices.

    View more

  • Module content:

    Measure and integration theory: The Caratheodory extension procedure for measures defined on a ring, measurable functions, integration with respect to a measure on a σ-ring, in particular the Lebesgue integral, convergence theorems and Fubini's theorem.
    Probability theory: Measure theoretic modelling, random variables, expectation values and independence, the Borel-Cantelli lemmas, the law of large numbers. L¹-theory, L²-theory and the geometry of Hilbert space, Fourier series and the Fourier transform as an operator on L², applications of Fourier analysis to random walks, the central limit theorem.

    View more

  • Module content:

    General topology: Concepts such as convergence, compactness, connectedness, separation axioms and continuity are introduced in topological spaces. Their basic properties are treated. Important topologies like the product topology and the quotient topology are discussed.
    Algebraic topology: Homotopy, the fundamental group, covering spaces, homotopy type.

    View more

  • Module content:

    Consult Department.

    View more

Elective modules

  • Module content:

    A selection of special topics will be presented that reflects the expertise of researchers in the Department. The presentation of a specific topic is contingent on student numbers. Consult the website of the Department of Mathematics and Applied Mathematics for more details.

    View more

  • Module content:

    An analysis as well as an implementation (including computer programs) of methods are covered. Numerical linear algebra: Direct and iterative methods for linear systems and matrix eigenvalue problems: Iterative methods for nonlinear systems of equations. Finite difference method for partial differential equations: Linear elliptic, parabolic, hyperbolic and eigenvalue problems. Introduction to nonlinear problems. Numerical stability, error estimates and convergence are dealt with.

    View more

  • Module content:

    An analysis as well as an implementation (including computer programs) of methods is covered. Introduction to the theory of Sobolev spaces. Variational and weak formulation of elliptic, parabolic, hyperbolic and eigenvalue problems. Finite element approximation of problems in variational form, interpolation theory in Sobolev spaces, convergence and error estimates.

    View more

  • Module content:

    Mathematical modelling of Random walk. Conditional expectation and Martingales. Brownian motion and other Lévy processes. Stochastic integration. Ito's Lemma. Stochastic differential equations. Application to finance.

    View more

  • Module content:

    This module aims at using advanced undergraduate mathematics and rigorously applying mathematical methods to concrete problems in various areas of natural science and engineering.
    The module will be taught by several lecturers from UP, industry and public sector. The content of the module may vary from year to year and is determined by relevant focus areas within the Department. The list of areas from which topics to be covered will be selected, includes: Systems of differential equations; dynamical systems; discrete structures; Fourier analysis; methods of optimisation; numerical methods; mathematical models in biology, finance, physics, etc.

    View more

  • Module content:

    Field-theoretic and material models of mathematical physics. The Friedrichs-Sobolev spaces. Energy methods and Hilbert spaces, weak solutions – existence and uniqueness. Separation of variables, Laplace transform, eigenvalue problems and eigenfunction expansions. The regularity theorems for elliptic forms (without proofs) and their applications. Weak solutions for the heat/diffusion and related equations.

    View more


General Academic Regulations and Student Rules
The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations. The G Regulations are updated annually and may be amended after the publication of this information.

Regulations, degree requirements and information
The faculty regulations, information on and requirements for the degrees published here are subject to change and may be amended after the publication of this information.

University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQSF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences