Code | Faculty |
---|---|
02133388 | Faculty of Natural and Agricultural Sciences |
Credits | Duration |
---|---|
Duration of study: 3 years | Total credits: 458 |
Minimum requirements for 2016 | ||||||||
Achievement level | ||||||||
Afrikaans or English | Mathematics | APS | ||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | |
5 | 3 | C | C | 7 | 1 | A | A | 34 |
Students may enrol for AIM 111 and AIM 121 instead of AIM 101 (the same content presented over 2 semesters).
Elective modules: IAS 361, IAS 382, WST 312, WST 322, WTW 320, WTW 382, WTW 383, WTW 386. All 72 elective credits must be on 3rd-year level.
A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.
It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.
Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.
The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.
Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.
It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.
The prerequisites are listed in the Alphabetical list of modules.
Transitional measures for Mathematics modules for 2016
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 150
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
Introduction to economics and principles of microeconomics
The scope of economics; the basic theory of demand and supply; price, income and cross elasticity of demand; consumer utility, the utility function and case studies in terms of the utility function; the theory of the firm in the short and long run; market structures, namely the perfect market, monopoly, oligopoly and monopolistic competition; public sector finances; microeconomics versus macroeconomics and economic statistics.
Module content:
National income and principles of macroeconomics
The mechanics of national income accounts, the Keynesian macroeconomic model, the money market, demand for money and money supply, money and credit creation and the role of the monetary authorities. The IS-LM model of macroeconomic equilibrium and monetary and fiscal policy applications. The aggregate demand and supply models with the debate between the classical school, the monetarists and the Keynesian school. The problems of inflation and unemployment. Macroeconomic issues, namely macroeconomic policy, international trade, the balance of payments and economic growth.
Module content:
Characterisation of a set of measurements: Graphical and numerical methods. Random sampling. Probability theory. Discrete and continuous random variables. Probability distributions. Generating functions and moments.
Module content:
Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.
Module content:
*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.
Module content:
Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.
Module content:
*Note: All students registered for degrees within the School of IT, excluding the two four year programmes, BIS (Information Science) and BIS (Publishing), need to enrol for this module.
This module introduces imperative computer programming, which is a fundamental building block of computer science. The process of constructing a program for solving a given problem, of editing it, compiling (both manually and automatically), running and debugging it, is covered from the beginning. The aim is to master the elements of a programming language and be able to put them together in order to construct programs using types, control structures, arrays, functions and libraries. An introduction to object orientation will be given. After completing this module, the student should understand the fundamental elements of a program, the importance of good program design and user-friendly interfaces. Students should be able to conduct basic program analysis and write complete elementary programs.
Module content:
*Only for BSc (Actuarial and Financial Mathematics and Mathematical Statistics) and BCom (Statistics with option Mathematical Statistics) students.
Key principles of financial management. Company ownership. Taxation. Introduction to financial statements. Structure of financial statements. Depreciation and reserves. Preparing financial statements. Group financial statements and insurance company financial statements. Interpretation of financial statements. Limitation of financial statements. Issue of share capital.
Module content:
*Only for BSc (Actuarial and Financial Mathematics; Mathematical Statistics) and BCom (Statistics with option Mathematical Statistics) students.
Financial instruments. Use of financial derivatives. Financial institutions. Time value of money. Component cost of capital. Weighted average cost of capital. Capital structure and dividend policy. Capital project appraisal. Evaluating risky investments.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions, polar curves and quadratic curves.
Minimum credits: 146
Module content:
Accumulation functions, interest, time value of money, compounding periods, cash flow models, equations of value, annuities certain, continuous time application, life tables, derivation of contingent probabilities from life tables, contingent payments, loan schedules, performance measurement, valuation of fixed interest securities..
Module content:
Fundamentals of survival models, simple laws of mortality, expectation of life, elementary survival contracts, commutation functions, select and ultimate life tables, life annuities, accumulation and discounting, life insurance, net and gross premiums, reserves, statistical considerations.
Module content:
Database design: the relational model, structured query language (SQL), entity relationship modelling, normalisation, database development life cycle; practical introduction to database design. Databases: advanced entity relationship modelling and normalisation, object-oriented databases, database development life cycle, advanced practical database design.
Module content:
Set theory. Probability measure functions. Random variables. Distribution functions. Probability mass functions. Density functions. Expected values. Moments. Moment generating functions. Special probability distributions: Bernoulli, binomial, hypergeometric, geometric, negative binomial, Poisson, Poisson process, discrete uniform, uniform, gamma,exponential, Weibull, Pareto, normal. Joint distributions: Multinomial, extended hypergeometric, joint continuous distributions. Marginal distributions. Independent random variables. Conditional distributions. Covariance, correlation. Conditional expected values. Transformation of random variables: Convolution formula. Order statistics. Stochastic convergence: Convergence in distribution. Central limit theorem. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Module content:
Stochastic convergence: Asymptotic normal distributions, convergence in probability. Statistics and sampling distributions: Chi-squared distribution. Distribution of the sample mean and sample variance for random samples from a normal population. T-distribution. F-distribution. Beta distribution. Point estimation: Method of moments. Maximum likelihood estimation. Unbiased estimators. Uniform minimum variance unbiased estimators. Cramer-Rao inequality. Efficiency. Consistency. Asymptotic relative efficiency.
Bayes estimators. Sufficient statistics. Completeness. The exponential class. Confidence intervals. Test of statistical hypotheses. Reliability and survival distributions. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Module content:
This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.
Module content:
Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.
Module content:
*Students will not be credited for both WTW 162 and WTW 264 or both WTW 264 and WTW 286 for their degree.
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first order equations, linear equations of higher order, systems of linear equations. Laplace transform.
Module content:
Generalised cash-flow model. The time value of money. Interest rates. Discounting and accumulating. Compound interest functions. Equations of value. Loan schedules. Project appraisal. Investments. Simple compound interest problems. The ''No Arbitrage'' assumption and forward contracts. Term structure of interest rates. Stochastic interest rate models.
Module content:
Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.Minimum credits: 162
Module content:
Multivariate statistical distributions: Moments of a distribution, moment generating functions, independence. Multivariate normal distribution: Conditional distributions, partial and multiple correlations. Multinomial and multivariate Poisson distributions: Asymptotic normality and estimation of parameters. Distribution of quadratic forms in normal variables. Multivariate normal samples: Estimation of the mean vector and covariance matrix, estimation of correlation coefficients, distribution of the sample mean, sample covariance matrix and sample correlation coefficients. The linear model: Models of full rank, least squares estimators, test of hypotheses. Practical applications: Practical statistical modelling and analysis using statistical computer packages and interpretation of the output.
Module content:
Definition of a stochastic process. Stationarity. Covariance stationary. Markov property. Random walk. Brownian motion. Markov chains. Chapman-Kolmogorov equations. Recurrent and transient states. First passage time. Occupation times. Markov jump processes. Poisson process. Birth and death processes. Structures of processes. Structure of the time-homogeneous Markov jump process. Applications in insurance. Practical statistical modelling, analysis and simulation using statistical computer packages and the interpretation of the output.
Module content:
Stationary and non-stationary univariate time-series. Properties of autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) processes. Identification, estimation and diagnostic testing of a time-series model. Forecasting. Multivariate time-series. Practical statistical modelling and analysis using statistical computer packages.
Module content:
Decision theory. Loss distributions. Reinsurance. Risk models. Ruin theory. Credibility theory. Methods to forecast future claim numbers and amounts. The generalised linear model: Exponential family, mean and variance, link functions, deviance and residual analysis, test statistics, log-linear and logit models. Practical statistical modelling and analysis using statistical computer packages.
Module content:
Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.
Module content:
Mean variance portfolio theory. Market equilibrium models such as the capital asset pricing model. Factor models and arbitrage pricing theory. Measures of investment risk. Efficient market hypothesis. Stochastic models of security prices
Module content:
Discrete time financial models: Arbitrage and hedging; the binomial model. Continuous time financial models: The Black-Scholes formula; pricing of options and the other derivatives; interest rate models; numerical procedures.Module content:
Risk and insurance. Stakeholders and the external environment. Professionalism. Actuaries and the regulatory environment. Insurance products and their providers. Pricing of insurance products. Wider fields of actuarial practice. Reinsurance. New developments in the industry.
Module content:
Principles of actuarial modelling and stochastic processes. Markov chains and continuous-time Markov jump processes. Simulation of stochastic processes. Survival models and the life table. Estimating the lifetime distribution Fx(t). The Cox regression model. The two-state Markov model. The general Markov model. Binomial and Poisson models. Graduation and statistical tests. Methods of graduation. Exposed to risk. The evaluation of assurances and annuities. Premiums and reserves.
Module content:
Sampling: basic techniques in probability, non-probability, and sampling methods. Designing experiments: experimental and control groups, different data types and relationships. Big and small data: exploring popular trends used in practice. Consultation practice: ethical considerations, study design, data collection and presentation, report writing and presentation. Hands-on application of statistical software and packages to real-life datasets.
Module content:
Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.
Module content:
Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.
Module content:
Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.
Module content:
Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.
Module content:
The stochastic approach to annuities and assurances involving one of two lives. Definitions, estimation and use of select mortality functions. Multiple decrements and pension funds. Variable benefit, disability, long-term care contracts. Life insurance contracts: expenses and bonuses. Net and gross premiums and reserves for fixed and variable benefit contracts. Discounted emerging cost techniques. Profit testing. Asset shares for life insurance contracts. Alterations to contracts. Costs of guarantees under life insurance contracts. Factors affecting mortality, selection, standardisation. The process of population projection and its main determinants. Valuation of benefits under a disability insurance contract.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App