Code | Faculty | Department |
---|---|---|
02133263 | Faculty of Natural and Agricultural Sciences | Department: Mathematics and Applied Mathematics |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 3 years | Total credits: 416 | NQF level: 07 |
Important information for all prospective students for 2024
The admission requirements below apply to all who apply for admission to the University of Pretoria with a National Senior Certificate (NSC) and Independent Examination Board (IEB) qualifications. Click here for this Faculty Brochure.
Minimum requirements | ||
Achievement level | ||
English Home Language or English First Additional Language | Mathematics | APS |
NSC/IEB | NSC/IEB | |
5 | 6 | 34 |
Life Orientation is excluded when calculating the APS.
Applicants currently in Grade 12 must apply with their final Grade 11 (or equivalent) results.
Applicants who have completed Grade 12 must apply with their final NSC or equivalent qualification results.
Please note that meeting the minimum academic requirements does not guarantee admission.
Successful candidates will be notified once admitted or conditionally admitted.
Unsuccessful candidates will be notified after 30 June.
Applicants should check their application status regularly on the UP Student Portal at click here.
Applicants with qualifications other than the abovementioned should refer to the Brochure: Undergraduate Programme Information 2024: Qualifications other than the NSC and IEB, available at click here.
International students: Click here.
Transferring students
A transferring student is a student who, at the time of applying at the University of Pretoria (UP) is/was a registered student at another tertiary institution. A transferring student will be considered for admission based on NSC or equivalent qualification and previous academic performance. Students who have been dismissed from other institutions due to poor academic performance will not be considered for admission to UP.
Closing dates: Same as above.
Returning students
A returning student is a student who, at the time of application for a degree programme is/was a registered student at UP, and wants to transfer to another degree at UP. A returning student will be considered for admission based on NSC or equivalent qualification and previous academic performance.
Note:
Closing date for applications from returning students
Unless capacity allows for an extension of the closing date, applications from returning students must be submitted before the end of August via your UP Student Centre.
Candidates who do not comply with the minimum admission requirements for BSc (Mathematics), may be considered for admission to the BSc – Extended programme – Mathematical Sciences, which requires an additional year of study.
Please note: Progression from the BSc – Extended programme – Mathematical Sciences to the mathematics-intensive programmes will be considered only if students obtained a GPA of 65% in their first-year modules. Students who pass all their first-year modules will be advised on alternative academic pathways.
BSc – Extended Programme – Mathematical Sciences Minimum requirements | ||
Achievement level | ||
English Home Language or English First Additional Language | Mathematics | APS |
NSC/IEB | NSC/IEB | |
4 | 5 | 28 |
Note:
*The BSc – Extended programmes are not available for students who meet all the requirements for the corresponding mainstream programme.
*Please note that only students who apply in their final NSC or equivalent qualification year will be considered for admission into any of the BSc – Extended programmes. Students who are upgrading or taking a gap year will not be considered.
* BSc Extended programmes are selection programmes. Additional selection criteria apply.
1.1 Requirements for specific modules
A candidate who:
or
or
1.2 Fundamental modules
A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 140
Fundamental = 14
Core = 64
Elective = 62
Additional information:
Choose electives according to the following combinations with a view to pursuing specialisation in the relevant field:
Students who want to take other electives must consult the Undergraduate Programme Coordinator in the Department of Mathematics and Applied Mathematics.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.
Module content:
Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.
Module content:
Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions and quadratic curves.
Module content:
The module serves as an introduction to computer programming as used in science. Modelling of dynamical processes using difference equations; curve fitting and linear programming are studied. Applications are drawn from real-life situations in, among others, finance, economics and ecology.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.
Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.
Module content:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEPR-model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
The focus is on object-oriented (OO) programming. Concepts including inheritance and multiple inheritance, polymorphism, operator overloading, memory management (static and dynamic binding), interfaces, encapsulation, reuse, etc. will be covered in the module. The module teaches sound program design with the emphasis on modular code, leading to well structured, robust and documented programs. A modern OO programming language is used as the vehicle to develop these skills. The module will introduce the student to basic data structures, lists, stacks and queues.
Module content:
This module introduces imperative computer programming, which is a fundamental building block of computer science. The process of constructing a program for solving a given problem, of editing it, compiling (both manually and automatically), running and debugging it, is covered from the beginning. The aim is to master the elements of a programming language and be able to put them together in order to construct programs using types, control structures, arrays, functions and libraries. An introduction to object orientation will be given. After completing this module, the student should understand the fundamental elements of a program, the importance of good program design and user-friendly interfaces. Students should be able to conduct basic program analysis and write complete elementary programs.
Module content:
This module introduces concepts and terminology related to the computer science discipline. General topics covered include the history of computing, machine level representation of data, Boolean logic and gates, basic computer systems organisation, algorithms and complexity and automata theory. The module also introduces some of the subdisciplines of computer science, such as computer networks, database systems, compilers, information security and intelligent systems. The module also focues on modelling of algorithms.
Module content:
This module deals with the core principles of economics. A distinction between macroeconomics and microeconomics is made. A discussion of the market system and circular flow of goods, services and money is followed by a section dealing with microeconomic principles, including demand and supply analysis, consumer behaviour and utility maximisation, production and the costs thereof, and the different market models and firm behaviour. Labour market institutions and issues, wage determination, as well as income inequality and poverty are also addressed. A section of money, banking, interest rates and monetary policy concludes the course.
Module content:
This module deals with the core principles of economics, especially macroeconomic measurement the private and public sectors of the South African economy receive attention, while basic macroeconomic relationships and the measurement of domestic output and national income are discussed. Aggregate demand and supply analysis stands core to this course which is also used to introduce students to the analysis of economic growth, unemployment and inflation. The microeconomics of government is addressed in a separate section, followed by a section on international economics, focusing on international trade, exchange rates and the balance of payments. The economics of developing countries and South Africa in the global economy conclude the course.
Module content:
*Only for students in BSc (Actuarial and Financial Mathematics), BSc (Mathematics), BSc (Applied Mathematics), BSc (Mathematical Statistics), BSc Extended programme – Mathematical Sciences and BCom (Statistics) who comply with the set prerequisites.
Key principles of financial management. Company ownership. Taxation. Introduction to financial statements. Structure of financial statements. Depreciation and reserves. Preparing financial statements. Group financial statements and insurance company financial statements. Interpretation of financial statements. Limitation of financial statements. Issue of share capital.
Module content:
The nature and function of accounting; the development of accounting; financial position; financial result; the recording process; processing of accounting data; treatment of VAT; elementary income statement and balance sheet; flow of documents; accounting systems; introduction to internal control and internal control measures; bank reconciliations; control accounts; adjustments; financial statements of a sole proprietorship; the accounting framework.
Module content:
The entrepreneurial mind-set; managers and managing; values, attitudes, emotions, and culture: the manager as a person; ethics and social responsibility; decision making; leadership and responsible leadership; effective groups and teams; managing organizational structure and culture inclusive of the different functions of a generic organisation and how they interact (marketing; finance; operations; human resources and general management); contextualising Sustainable Development Goals (SDG) in each of the topics.
Module content:
SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes’ principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton’s laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton’s laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.
Module content:
Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.
Module content:
Characterisation of a set of measurements: Graphical and numerical methods. Random sampling. Probability theory. Discrete and continuous random variables. Probability distributions. Generating functions and moments.
Module content:
Sampling distributions and the central limit theorem. Statistical inference: Point and interval estimation. Hypothesis testing with applications in one and two-sample cases. Introductory methods for: Linear regression and correlation, analysis of variance, categorical data analysis and non-parametric statistics. Identification, use, evaluation and interpretation of statistical computer packages and statistical techniques.
Minimum credits: 132
Core = 84
Elective = 48
Additional information:
Choose electives according to the following combinations with a view to pursuing specialisation in the relevant field:
Students who want to take other electives must consult the Undergraduate Programme Coordinator in the Department of Mathematics and Applied Mathematics.
Module content:
This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.
Module content:
*This module is recommended as an elective only for students who intend to enrol for WTW 310 and/or WTW 320. Students will not be credited for more than one of the following modules for their degree: WTW 220 and WTW 224.
Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.
Module content:
Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.
Module content:
Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.
Module content:
Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.
Module content:
*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.
Module content:
Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.
Module content:
Statistical evaluation of data in line with ethical practice, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry. Examples throughout the course demonstrate the relevance of the theory to meeting the sustainable development goals of clean water and clean, affordable energy.
Module content:
Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to 13C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives Training in an ethical approach to safety that protects self, others and the environment is integral to the practical component of the course.
Module content:
Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, electrochemical properties of transition metals in aqueous solution. Fundamentals of spectroscopy and introduction to IR spectroscopy. During practical training students learn to acquire and report data ethically. Practical training also deals with the misuse of chemicals and appropriate waste disposal to protect the environment and meet the UN sustainable development goals.
Module content:
This module introduces students to a framework for investigating both computability and complexity of problems. Topics include, but are not limited to: finite-state machines, regular expressions and their application in a language such as awk, the Halting problem, context-free grammars, P vs NP problem, NP-complete class, reduction techniques, regular languages, DFAs and NFAs, Lattices, Church-Turing thesis.
Module content:
Data abstraction is a fundamental concept in the design and implementation of correct and efficient software. In prior modules, students are introduced to the basic data structures of lists, stacks and queues. This module continues with advanced data structures such as trees, hash tables, heaps and graphs, and goes into depth with the algorithms needed to manipulate them efficiently. Classical algorithms for sorting, searching, traversing, packing and game playing are included, with an emphasis on comparative implementations and efficiency. At the end of this module, students will be able to identify and recognise all the classical data structures; implement them in different ways; know how to measure the efficiency of implementations and algorithms; and have further developed their programming skills, especially with recursion and polymorphism.
Module content:
The module will introduce the concepts of model-driven analysis and design as a mechanism to develop and evaluate complex software systems. Systems will be decomposed into known entities, such as design patterns, classes, relationships, execution loops and process flow, in order to model the semantic aspects of the system in terms of structure and behaviour. An appropriate tool will be used to support the software modelling. The role of the software model in the enterprise will be highlighted. Students who successfully complete this module will be able to concep-tualise and analyse problems and abstract a solution.
Module content:
This module will introduce the student to netcentric systems by focusing on the development of systems for the web, mobile devices and the cloud. To lay the foundation on which the rest of the module can follow, traditional web-based programming languages such as HTML5, JavaScript, CSS and Python will be covered differentiating between client-side and server-side computation. Persistence of web-based data will be included for both client and server-based computation. These technologies will be extended and applied to mobile platforms where the availability of a connection, location-services and mobile device limitations play a role. For cloud platforms, aspects relating to task partitioning, security, virtualisation, cloud storage and access to the shared data stores, data synchronisation, partitioning and replication are considered. In order to practically demonstrate that a student has reached these outcomes, students will be required to use, integrate and maintain the necessary software and hardware by completing a number of smaller practical assignments where after integrating all these technologies into a comprehensive and practical programming project is required.
Module content:
This module will expose students to the evolution of databases systems. They will be able to model data conceptually, in terms of models such as conceptual, relational, object oriented, graph-based and network and the mapping between models, in particular between the conceptual and relational model. Foundational concepts relating to the relational model will be considered, such as: entity and referential integrity, relational algebra and calculus, functional dependency, normals forms, Indexing of database systems and transaction processing will also form an integral part of the curriculum. The physical data representation of the databases system both in memory and within the file system of the operating system will be considered.
Module content:
This module provides the foundations on which other modules build by enabling a deeper understanding of how software interacts with hardware. It will teach the design and operation of modern digital computers by studying each of the components that make up a digital computer and the interaction between these components. Specific areas of interest, but not limited to, are: representation of data on the machine-level; organisation of the machine on the assembly level; the architecture and organisation of memory; inter- and intra-component interfacing and communication; data paths and control; and parallelism. Topic-level detail and learning outcomes for each of these areas are given by the first 6 units of ‘Architecture and Organisation’ knowledge area as specified by the ACM/IEEE Computer Science Curriculum 2013.
The concepts presented in the theory lectures will be reinforced during the practical sessions by requiring design and implementation of the concepts in simulators and assembly language using an open source operating system.
Module content:
Macroeconomics
From Wall and Bay Street to Diagonal Street: a thorough understanding of the mechanisms and theories explaining the workings of the economy is essential. Macroeconomic insight is provided on the real market, the money market, two market equilibrium, monetarism, growth theory, cyclical analysis, inflation, Keynesian general equilibrium analysis and fiscal and monetary policy issues.
Module content:
Microeconomics
Microeconomic insight is provided into: consumer and producer theory, general microeconomic equilibrium, Pareto-optimality and optimality of the price mechanism, welfare economics, market forms and the production structure of South Africa. Statistic and econometric analysis of microeconomic issues.
Module content:
Macroeconomics
Application of the principles learned in EKN 214 on the world we live in. We look at international markets and dynamic macroeconomic models, and familiarise the students with the current macroeconomic policy debates. We also take a look at the latest macroeconomic research in the world. The course includes topics of the mathematical and econometric analysis of macroeconomic issues.
Module content:
Vibrating systems and waves (14 lectures)
Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.
Modern physics (30 lectures)
Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.
Heat and thermodynamics (12 lectures)
Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.
Modelling and simulation (7 practical sessions)
Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.
Error Analysis (7 practical sessions)
Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.
Module content:
Classical mechanics (28 lectures)
Fundamental concepts, energy and angular momentum, calculus of variations and Lagrangian mechanics, conservative central forces and two body problems, scattering, mechanics in rotating reference frames, many body systems.
Physical Optics (14 lectures)
Maxwell’s equations, wave equation and plane wave solution, coherence, interference,
diffraction, polarisation.
Physics of Materials (14 lectures)
Classification of materials. Atomic bonding. Crystallography. Defects. Material strength.
Phase diagram's, Ceramics. Polymers. Composites. Fracture. Electrical and
magnetic properties. Semiconductors. Smart materials Nanotechnology.
Experiments (14 sessions)
Module content:
Set theory. Probability measure functions. Random variables. Distribution functions. Probability mass functions. Density functions. Expected values. Moments. Moment generating functions. Special probability distributions: Bernoulli, binomial, hypergeometric, geometric, negative binomial, Poisson, Poisson process, discrete uniform, uniform, gamma,exponential, Weibull, Pareto, normal. Joint distributions: Multinomial, extended hypergeometric, joint continuous distributions. Marginal distributions. Independent random variables. Conditional distributions. Covariance, correlation. Conditional expected values. Transformation of random variables: Convolution formula. Order statistics. Stochastic convergence: Convergence in distribution. Central limit theorem. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Module content:
Stochastic convergence: Asymptotic normal distributions, convergence in probability. Statistics and sampling distributions: Chi-squared distribution. Distribution of the sample mean and sample variance for random samples from a normal population. T-distribution. F-distribution. Beta distribution. Point estimation: Method of moments. Maximum likelihood estimation. Unbiased estimators. Uniform minimum variance unbiased estimators. Cramer-Rao inequality. Efficiency. Consistency. Asymptotic relative efficiency.
Bayes estimators. Sufficient statistics. Completeness. The exponential class. Confidence intervals. Test of statistical hypotheses. Reliability and survival distributions. Practical applications. Practical statistical modelling and analysis using statistical computer packages and the interpretation of the output.
Minimum credits: 144
Core = 72
Elective = 72
Additional information:
Module content:
Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.
Module content:
Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.
Module content:
Group theory: Definition, examples, elementary properties, subgroups, permutation groups, isomorphism, order, cyclic groups, homomorphisms, factor groups. Ring theory: Definition, examples, elementary properties, ideals, homomorphisms, factor rings, polynomial rings, factorisation of polynomials. Field extensions, applications to straight-edge and compass constructions.
Module content:
Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.
Module content:
Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.
Module content:
Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. These techniques are discussed in terms of their use in environmental analysis and the value they contribute to meeting the UN sustainable development goals (#3,6 & 11). Instrumental electrochemistry. The relevance of electrochemistry to providing affordable and clean energy (UN SDG#7) is addressed.
Module content:
Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation). Practical: Laboratory sessions are designed to develop the rational thinking behind the design of organic chemistry experiments. An industrial project specifically prepares students for work in SA industry context and honours projects. As part of this practical programme the UN sustainable development goals must be considered in evaluating the best industrial process.
Module content:
Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, acid-base concepts, non-aqueous solvents, special topics.
Module content:
The module exposes students to problems associated with software development on an industrial scale. Overall goals of the module are: to become familiar with the latest trends in software engineering; to understand the software engineering process and to appreciate its complexity; to be exposed to a variety of methodologies for tackling different stages of the software lifecycle; to understand and apply the concepts of systems administration and maintenance; to complete the development of a fairly large object orientation-based software product. The focus of the module is on a project that lasts the whole year. The project is completed in groups of approximately four (4) students and teaches students to take responsibility for a variety of roles within a group, and to understand the different requirements for these; to experience the advantages and problems of working in a group; professionalism with regards to particularly colleagues and clients.
After the successful completion of this module, the student will be able to: understand the psychology of a client; work in groups; and have an appreciation for planning, designing, implementing and maintaining large projects. These qualities should place the students in a position in which they are able to handle software development in the corporate environment.
Module content:
The main objective of this module is to introduce a selection of topics from artificial intelligence (AI), and to provide the student with the background to implement AI techniques for solving complex problems.
This module will cover topics from classical AI, as well as more recent AI paradigms. These topics include: search methods, game playing, knowledge representation and reasoning, machine learning, neural networks, genetic algorithms, artificial life, planning methods, and intelligent agents. In the practical part of this module, students will get experience in implementing
(1) game trees and evolving game-playing agents;
(2) a neural network and applying it to solve a real-world problem; and
(3) a genetic algorithm and applying it to solve a real-world problem.
Module content:
This module builds on a prior introductory module on database technology and provides more advanced theoretical and practical study material for managing large volumes of data, for example, noSQL database systems and MapReduce. The module will consider file system models, for example Hadoop, relevant for big data storage, manipulation at scale, mining and visualisation. Basic knowledge of parallel decomposition concepts will be included.
Module content:
This module develops an appreciation of the fundamentals and design principles for information assurance and security. Students will develop a clear understanding of the basic information security services and mechanisms, enabling them to design and evaluate the integration of solutions into the user application environment. Emphasis will be placed on services such as authorisation and confidentiality. Students will acquire knowledge and skills of Security Models such as the Bell-LaPadula, Harrison-Ruzzo Ullman and Chinese Wall Model. Students will develop a detailed understanding of the confidentiality service by focusing on cryptology and the practical implementation thereof. The student will be introduced to professional and philosophical ethics. At the end of the module students will be able to engage in a debate regarding the impact (local and global) of computers on individuals, organisations and society. The professionalism of IT staff will be discussed against national and international codes of practices such as those of the CSSA, ACM and IEEE.
Module content:
The objective of this module is to acquaint the student with the terminology of communication systems and to establish a thorough understanding of exactly how data is transferred in such communication networks, as well as applications that can be found in such environments. The study material includes: concepts and terminology, the hierarchy of protocols according to the OSI and TCP/IP models, protocols on the data level, physical level and network level as well as higher level protocols. The practical component of the module involves programming TCP/IP sockets using a high level language. The emphasis throughout is on the technical aspects underlying the operation of networks, rather than the application of networks.
Module content:
Programming languages are the backbone for software development. Each language has its own different syntax and semantics, but there are many common concepts that can be studied and then illustrated through the languages. The module concentrates on issues of object orientation, including delegation, iteration and polymorphism. It surveys how languages provide the basic building blocks for data and control, as well as exception handling and concurrency. At the end of the module, students will be able to appreciate the rich history behind programming languages, leading to independent principles that evolve over time. They will be skilled at using a variety of programming languages, including new paradigms such as functional, logical and scripting, and will know how to learn a new language with ease. From this experience, they will be able to apply evaluation criteria for choosing an appropriate programming language in a given scenario.
Module content:
This module will introduce the student to the fundamentals of compiler construction. These include: the structural difference between a high-level and a von-Neumann language, the meaning of syntax and semantics and what semantics-preserving correctness means; the concepts of regular expressions, finite automata, context-free grammars in the context of programming languages; the need to construct parse-trees for given programmes; the application of data structures and algorithms for the purpose of code-analysis, code-optimisation and register-allocation; and the limits of code-analysis in terms of undecideability and the halting problem.
After successful completion of the module, the student will have an understanding of the importance of compilers and will understand how to implement a compiler, in terms of its components, the scanner, parser, type checker and code-generator for a given grammar.
Module content:
The aim of this module is to acquire a sound knowledge of the basic theory of interactive computer graphics and basic computer graphics programming techniques. The theory will cover graphics systems and models, graphics programming, input and interaction, geometric objects and transformations, viewing in 3D, shading, rendering techniques, and introduce advanced concepts, such as object-oriented computer graphics and discrete techniques. The module includes a practical component that enables students to apply and test their knowledge in computer graphics. The OpenGL graphics library and the C programming language will be used for this purpose.
Module content:
Public finance
Role of government in the economy. Welfare economics and theory of optimality. Ways of correcting market failures. Government expenditure theories, models and programmes. Government revenue. Models on taxation, effects of taxation on the economy. Assessment of taxation from an optimality and efficiency point of view. South African perspective on public finance.
Module content:
Economic analyses
Identification, collection and interpretation process of relevant economic data; the national accounts (i.e. income and production accounts, the national financial account, the balance of payments and input-output tables); economic growth; inflation; employment, unemployment, wages, productivity and income distribution; business cycles; financial indicators; fiscal indicators; social indicators; international comparisons; relationships between economic time series - regression analysis; long-term future studies and scenario analysis; overall assessment of the South African economy from 1994 onwards.
Module content:
Economic policy and development: Capita select
The course provides an introduction to growth economics and also to some topics on development economics. Firstly, historical evidence is covered and then the canonical Solow growth model and some of its empirical applications (human capital and convergence). Secondly, the new growth theory (the AK and the Romer models of endogenous growth) are covered. Some of the development topics to be covered include technology transfer, social infrastructure and natural resources.
Module content:
Electronics (14 lectures)
Thévenin and Norton equivalent circuits, superposition principle, RC, LC and LRC circuits. Semiconductor diode. Bipolar transistor. Operational amplifiers. Computer controlled instrumentation.
Electromagnetism (21 lectures)
Electrostatics: Coulomb’s law, divergence and curl of E, Gauss’ law, Laplace’s equation, image charge problems, multipole expansion.
Magnetostatics: Lorenz force, Biot-Savart law, divergence and curl of magnetic field strength, Ampère’s law, magnetic vector potential, multipole expansion, boundary conditions.
Electrodynamics: Electromotive force, electromagnetic induction, Maxwell’s equations, wave equation.
Electric and magnetic fields in matter: Polarisation, electric displacement and Gauss’s law in dielectrics, linear dielectrics. Magnetisation (diamagnets, paramagnets, ferromagnets), auxiliary field H and Ampère’s law in magnetised materials, linear and nonlinear media.
Quantum mechanics (28 lectures)
The Schrödinger equation, the statistical interpretation of the wave function, momentum, the uncertainty principle, the time-independent Schrödinger equation, stationary states, the infinite square well potential, the harmonic oscillator, the free particle, the Delta-Function potential, the finite square well potential, Hilbert spaces, observables, eigen functions of a Hermitian operator, Dirac notation, the Schrödinger equation in spherical coordinates, the hydrogen atom, angular momentum spin.
Module content:
Statistical mechanics (28 lectures)
Isolated systems in thermodynamical equilibrium. Systems in equilibrium with a heat bath: the canonical ensemble, Gibbs' entropic formula, classical statistical mechanics, energy equipartition theorem, thermodynamic potentials, paramagnetism.
The classical limit of perfect gases: non-distinguishable character of quantum particles, the equation of state of the classical ideal gas. Quantum perfect gases: Black body radiation, the grand canonical ensemble, Fermi-Dirac distribution, the free electron gas in metals, the Bose-Einstein distribution, Bose-Einstein condensation.
Solid state physics (28 lectures)
Crystal structures, the reciprocal lattice, x-ray diffraction, lattice vibration, the Debye model, characteristics of solids, the free electron model, Pauli paramagnetism, electronic heat capacity, the relaxation time, electrical conduction, the classical Hall effect, thermal conduction in metals, failures of the free electron model, the independent electron model, band theory of solids.
Computational Physics and modelling. Assessment will be done through a portfolio of project reports. The topics for the projects will be selected from various sub-disciplines of Physics.
Module content:
Data exploration. Data wrangling. Statistical coding. Algorithmic thinking. Sampling: basic techniques in probability, non-probability, and resampling methods. Text mining and analytics. Machine learning: classification and clustering. Statistical concepts are demonstrated and interpreted through practical coding and simulation within a data science framework.
Module content:
Multivariate statistical distributions: Moments of a distribution, moment generating functions, independence. Multivariate normal distribution: Conditional distributions, partial and multiple correlations. Distribution of quadratic forms in normal variables. Multivariate normal samples: Estimation of the mean vector and covariance matrix, estimation of correlation coefficients, distribution of the sample mean, sample covariance matrix. Principal component analysis.The linear model: Models of full rank, least squares estimators, test of hypotheses.The generalised linear model: Exponential family mean and variance, link functions, deviance and residual analysis, test statistics, log- linear and logit models. Practical applications: Practical statistical modelling and analysis using statistical computer packages and interpretation of the output.
Module content:
Definition of a stochastic process. Stationarity. Covariance stationary. Markov property. Random walk. Brownian motion. Markov chains. Chapman-Kolmogorov equations. Recurrent and transient states. First passage time. Occupation times. Markov jump processes. Poisson process. Birth and death processes. Structures of processes. Structure of the time-homogeneous Markov jump process. Applications in insurance. Practical statistical modelling, analysis and simulation using statistical computer packages and the interpretation of the output.
Module content:
Note: Only one of the modules WST 321 or STK 320 may be included in any study programme.
Stationary and non-stationary univariate time-series. Properties of autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) processes. Identification, estimation and diagnostic testing of a time-series model. Forecasting. Multivariate time-series. Practical statistical modelling and analysis using statistical computer packages, including that of social responsibility phenomena.
Module content:
Bayes estimation. Loss distributions. Reinsurance. Risk models. Ruin theory. Credibility theory. Extreme value theory. Copulas. Practical statistical modelling and analysis using statistical computer packages.
Module content:
Mean variance portfolio theory. Market equilibrium models such as the capital asset pricing model. Factor models and arbitrage pricing theory. Measures of investment risk. Efficient market hypothesis. Stochastic models of security prices
Module content:
Discrete time financial models: Arbitrage and hedging; the binomial model. Continuous time financial models: The Black-Scholes formula; pricing of options and the other derivatives; interest rate models; numerical procedures.
Module content:
Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.
Module content:
Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.
Module content:
Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.
Module content:
Kinematics of a continuum: Configurations, spatial and material description of motion. Conservation laws. Analysis of stress, strain and rate of deformation. Linear constitutive equations. Applications: Vibration of beams, equilibrium problems in elasticity and special cases of fluid motion.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App