Code | Faculty | Department |
---|---|---|
12136006 | Faculty of Engineering, Built Environment and Information Technology | Department: Mining Engineering |
Credits | Duration | NQF level |
---|---|---|
Minimum duration of study: 5 years | Total credits: 675 | NQF level: 08 |
Please note: The Engineering Augmented Degree Programme (ENGAGE) is an extended degree programme with a five-year curriculum. It is designed to enable students who show academic potential but who do not meet the normal entry requirements for the four-year degree programme, to obtain an Engineering degree. ENGAGE students spend the first three years of the programme covering the content of the first two years of the four-year degree programme. They also take compulsory augmented modules in each of the Level 1 subjects. These augmented modules provide students with background knowledge and skills needed to succeed in an engineering degree. The curriculum for years four and five of the ENGAGE programme are identical to the curriculum for years 3 and 4 of the 4-year programme, respectively. Students may apply directly for admission to the programme.
Please note: All students will be required to successfully complete JCP 203, Community-based project 203, as part of the requirements for the BEng degree. A student may register for the module during any of the years of study of the programme, but preferably not during the first or the final year of study.
Learning outcomes of the BEng degree:
A graduate in engineering should be able to apply the following skills on an advanced level:
Learning contents of the BEng programmes:
Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below. This percentage varies for the different study directions, but conforms in all instances to the minimum knowledge area content as stipulated by ECSA.
Knowledge areas:
Important information for all prospective students for 2022
Transferring students
A transferring student is a student who, at the time of application for a degree programme at the University of Pretoria (UP) –
A transferring student will be considered for admission based on
Note: Students who have been dismissed at the previous institution due to poor academic performance, will not be considered for admission to UP.
Returning students
A returning student is a student who, at the time of application for a degree programme –
A returning student will be considered for admission based on
Note: Students who have been excluded/dismissed from a faculty due to poor academic performance may be considered for admission to another programme at UP. The Admissions Committee may consider such students if they were not dismissed more than twice. Only ONE transfer between UP faculties will be allowed, and a maximum of two (2) transfers within a faculty.
Important faculty-specific information on undergraduate programmes for 2022
Note: Our programmes are accredited by the Engineering Council of South Africa (ECSA), and our degrees meet the requirements for Professional Engineers in SA.
University of Pretoria website: click here
Minimum requirements | |||
Achievement level | |||
English Home Language or English First Additional Language | Mathematics | Physical Sciences | APS |
NSC/IEB | NSC/IEB | NSC/IEB | |
5 | 5 | 5 | 30 |
Promotion to the second semester of the first year and to the second year of study
Please note:
Promotion to the third year of study of the Four-year Programme, as well as to the third and the fourth years of study of the ENGAGE Programme. In case of the fourth year of study of the ENGAGE Programme, the words "first", "second" and "third" must be substituted with the words "second", "third" and "fourth" respectively.
Promotion to the fourth year of study of the Four-year Programme, as well as to the fifth year of study of the ENGAGE Programme. In case of the fifth year of study of the ENGAGE Programme, the words "second", "third" and "fourth" must be substituted with the words "third", "fourth" and "fifth" respectively.
University of Pretoria Programme Qualification Mix (PQM) verification project
The higher education sector has undergone an extensive alignment to the Higher Education Qualification Sub-Framework (HEQF) across all institutions in South Africa. In order to comply with the HEQSF, all institutions are legally required to participate in a national initiative led by regulatory bodies such as the Department of Higher Education and Training (DHET), the Council on Higher Education (CHE), and the South African Qualifications Authority (SAQA). The University of Pretoria is presently engaged in an ongoing effort to align its qualifications and programmes with the HEQSF criteria. Current and prospective students should take note that changes to UP qualification and programme names, may occur as a result of the HEQSF initiative. Students are advised to contact their faculties if they have any questions.
Minimum credits: 129
Module content:
General introduction to inorganic, analytical and physical chemistry. Nomenclature of inorganic ions and compounds, stoichiometric calculations concerning chemical reactions, redox reactions, solubilities and solutions, atomic structure, periodicity. Molecular structure and chemical bonding using the VSEPR model. Principles of reactivity, electrochemistry, energy and chemical reactions, entropy and free energy.
Appropriate tutorial classes and practicals.
Module content:
Introductory mathematics: Symbols, exponents, logarithms, angles in degrees, radial measure, goniometry, differentiation, and integration. Motion along a straight line: position and displacement, acceleration. Vectors: adding vectors, components, multiplying vectors. Motion in two and three dimensions: projectile motion, circular motion. Force and motion: Newton’s Law, force, friction. Kinetic energy and work: work, power. Potential energy: Centre of mass, linear momentum. Collisions: impulse and linear momentum, elastic collisions, inelastic collisions. Rotation: kinetic energy of rotation, torque. Oscillations and waves: Simple harmonic motion, types of waves, wavelength and frequency, interference of waves, standing waves, the Doppler effect. Temperature, heat and the first law of thermodynamics.
Module content:
Social sciences: Perspectives on contemporary society
An introduction to long-standing questions about the nature of human societies and contemporary challenges. Topics to be discussed include globalisation and increasing connectedness; rising unemployment, inequality and poverty; rapid urbanisation and the modern city form; transformations in the nature of work; environmental degradation and tensions between sustainability and growth; shifts in global power relations; the future of the nation-state and supra-national governance structures; and possibilities for extending human rights and democracy. Critical questions are posed about modern selfhood, sociality, culture and identity against the background of new communications technologies, ever more multicultural societies, enduring gender, class and race inequities, and the emergence of new and the resurgence of older forms of social and political identity. These issues are approached from the vantage of our location in southern Africa and the continent, drawing on social science perspectives.
Module content:
Humanities: Text, culture and communication
Successful communication of ideas, values and traditions depends on understanding both the literal and implied meanings of texts. In this module students are introduced to a variety of texts, including original literary and visual texts, with a view to developing an understanding of how textual meanings have been constructed and negotiated over time. Students are encouraged to understand themselves as products of – and participants in – these traditions, ideas and values. Appropriate examples will be drawn from, among others, the Enlightenment, Modernism, Existentialism, Postmodernism and Post-colonialism.
Module content:
A project-based approach is followed to equip students wiuth academic and IT skills to succeed within the School of Engineering at UP.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and chemical reasoning skills required by CHM 171/172.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and mathematical reasoning skills required by WTW 158.
Module content:
A project-based approach is followed to equip students with academic and IT skills to succeed within the School of Engineering at UP.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and physical reasoning skills required by FSK 116/176.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and mathematical reasoning skills required by WTW 164.
Module content:
*Attendance modules only
The modules are presented during the first year of study and, subject to departmental arrangements, can be attended either during July or December holiday periods. The duration will be a minimum of two weeks, during which time the student will receive training in a mine as well as a mine workshop. Training will include the following maintenance aspects: rotary and percussion drills, transport equipment, hoists and hoist ropes, electrical motors, conveyor belts and pumps. A satisfactory report must be submitted within two weeks after the commencement of lectures of the following semester.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,
Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor’s theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.
Minimum credits: 129
Module content:
The general objective of this module is to develop expertise in solving electric and electronic circuits. The topics covered in the course are Ohm's law, Kirchoff's current and voltage laws, voltage and current division, mesh current and node voltage methods, linearity, Thevenin and Norton equivalent circuits, source transformation, power transfer, energy storage elements in circuits (inductors and capacitors), and operational amplifiers and applications. Although circuits will mostly be solved using direct current (DC) sources, the final part of the course will consider methods to solve circuits using alternating current sources (AC).
Module content:
The Joint Community Project module is a credit-bearing educational experience where students are not only actively engaging in interpersonal skills development but also participate in service activities in collaboration with community partners. Students are given the opportunity to practice and develop their interpersonal skills formally taught in the module by engaging in teamwork with fellow students from different disciplines and also with non-technical members of the community. The module intends for the student to develop through reflection, understanding of their own experience in a team-based workspace as well as a broader understanding of the application of their discipline knowledge and its potential impact in their communities, in this way also enhancing their sense of civic responsibility. Compulsory class attendance 1 week before Semester 1 classes commence.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and reasoning skills required by EBN 111/122.
Module content:
Background knowledge, conceptual understanding, drawing skills and reasoning skills required by MGC 110.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and reasoning skills required by NMC 113/123.
Module content:
Background knowledge, problem-solving skills, conceptual understanding and reasoning skills required by SWK 122.
Module content:
Freehand sketching covering the following: perspective, isometric and orthographic drawings. Drawing conventions, graphical techniques and assembly drawings. Evaluation of drawings and error detection. True lengths of lines, projections and intersections. Practical applications of these techniques. Introduction to computer-aided drawings, including dimensioning, crosshatching and detailing. Introduction to basic manufacturing processes including primary (casting, forging and extrusion) and secondary (drilling, turning, milling, grinding, broaching and sawing) manufacturing procedures.
Module content:
Introduction to materials: the family of materials, atomic structure and types of bonding, crystal types and space arrangement of atoms, directions and planes in crystals, defects in crystals, diffusion in solids. Mechanical properties of materials: stress and strain, mechanical testing (strength, ductility, hardness, toughness, fatigue, creep), plastic deformation, solid-solution hardening, recrystallisation.
Polymeric materials: polymerisation and industrial methods, types of polymeric materials and their properties. Corrosion of metals: mechanisms and types of corrosion, corrosion rates, corrosion control. The heat treatment of steel: Fe-C phase diagram, equilibrium cooling, hardening and tempering of steel, stainless steel. Composite materials: Introduction, fibre reinforced polymeric composites, concrete, asphalt, wood.
Module content:
Introduction: Mining in South Africa: Overview of mining and history in South Africa, Minerals and mining. Surface mining: surface mining method, surface mining planning, rock breaking, rock loading and transport. Underground hard rock mining: A mine in outline, explanation of underground mining terms, basic mine layouts, shafts, development, stoping methods, compressed air, water and electrical reticulation. Underground coal mining: planning and development, rock breaking: stoping and tunnelling. Mine environmental engineering: ventilation practice, airflow, fans, gases, heat, psychometry. Mine strata control: strata control in deep and shallow underground mines, strata control in coal mines.
Module content:
The student needs to undergo practical mine training for a period of at least 6 weeks to be exposed to the mining environment, a report on this vacation work will be expected as per department guideline, in English only.
Module content:
Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema. Multiple integrals, polar, cylindrical and spherical coordinates. Line integrals and the theorem of Green. Surface integrals and the theorems of Gauss and Stokes.
Module content:
Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.
Minimum credits: 126
Module content:
Engineering systems are often subjected to variation, uncertainty and incomplete information. Mathematical statistics provides the basis for effectively handling and quantifying the effect of these factors. This module provides an introduction to the concepts of mathematical statistics and will include the following syllabus themes: data analysis, probability theory, stochastic modelling, statistical inference and regression analysis.
Module content:
Spreadsheet applications: Formulas and calculations, named ranges, plotting and trend lines, goal seek, linear programming, importing and exporting data, data navigation and filtering. Programming fundamentals: Names and objects, conditional and unconditional looping, branching, functions, modules, packages, reading and writing data files, graphical output (plotting). Solving simple problems using a high level programming language to develop, code and debug programs. Solving complex problems by breaking it down into a number of simple problems using concepts such as functions, modules and available packages. Programming principles are developed through solving mathematics and physics problems.
Module content:
Kinetics of systems of particles, Newton’s 2nd law generalised for a system of particles, rate of change of momentum and angular momentum relations, work-energy relations, conservation laws, steady mass flow. Plane kinematics of rigid bodies, rotation, translation, general 2D motion, relative motion analysis. Moments and products of inertia. Plane kinetics of rigid bodies, equations of motion, rotation, translation, general 2D motion, work-energy relations. Vibration and time response.
Module content:
Application overview. Concepts: system, control mass, control volume, property, state, process, cycles, mass, volume, density, pressure, pure substances, property tables, ideal gases, work and heat, internal energy, enthalpy, specific heat capacity. First law of thermodynamics for control masses and control volumes. Conservation of mass. Processes: isothermal, polytropic, adiabatic, isentropic. Second law of thermodynamics and entropy for control masses and control volumes. Introduction to power cycles . Experimental techniques in thermodynamics.
Module content:
Communicate effectively, both orally and in writing, with engineering audiences and the community at large. Written communication as evidenced by: uses appropriate structure, use of modern or electronic communication methods; style and language for purpose and audience; uses effective graphical support; applies methods of providing information for use by others involved in engineering activity; meets the requirements of the target audience. Effective oral communication as evidenced by appropriate structure, style and language; appropriate visual materials; delivers fluently; meets the requirements of the intended audience. Audiences range from engineering peers, management and lay persons, using appropriate academic or professional discourse. Typed reports range from short (300-1 000 word plus tables diagrams) to long (10 000-15 000 words plus tables, diagrams, references and appendices), covering material at exit level. Methods of providing information include the conventional methods of the discipline, for example engineering drawings, as well as subject-specific methods.
Module content:
Various technologies are found within the mining industry ranging from simple modelling packages to expert level optimisation and implementation packages. This module introduce the terminology used in mining technology and software applications, explaining the applications and limitations of these. This module includes Computer aided Design (CAD) techniques, graphical systems, geological modelling and geostatistical evaluation, scheduling, optimisation and numerical modelling.
Module content:
Adjustment and use of following instruments: Plane table, level, compass and theodolite. Elementary site surveying and leveling, tachometry. Definition of survey. Co-ordinate systems and bearing. Connections and polars. Methods of determining points. Elevation. Tachometry.
Module content:
Concept of Stress: Stresses in structural members, stress on oblique plane and stress under general loading, components of stress, design considerations. Stress and Strain: statically indeterminate problems, thermal effects, Poisson’s ratio, generalised Hookes Law, shearing strain, stress-strain relationships. Torsion: Torsion of circular bars, stresses and strains in pure shear, power transmission, and statically indeterminate torsional members. Pure Bending: symmetric members in pure bending, stresses and deformations, deformations in transverse cross-sections, members made of composite materials, eccentric axial loading. Analysis and Design of Beams for Bending: shear and bending moment diagrams, relationships between load, shear and bending moments, design of prismatic beams for bending. Shearing stresses in Beams and Thin-Walled Members: Horizontal shearing stresses in beams, shearing stresses in Thin-Walled members. Transformation of Stress and Strain: Plane stress transformation, Mohr’s circle, principal stresses, maximum values and stress variation in prismatic beams; Plane strain transformation, Mohr’s circle, principal strains, maximum values, general state of stress, stresses in Thin-Walled pressure vessels. Principal Stresses under a given Loading: Principal stresses in beams, design of transmission shafts, stresses under combined loads. Deflection of Beams: Deformation under transverse loading, statically indeterminate beams, method of superposition. Energy Methods: Strain energy, elastic strain energy, strain energy for a general state of stress.
Module content:
Linear algebra, eigenvalues and eigenvectors with applications to first and second order systems of differential equations. Sequences and series, convergence tests. Power series with applications to ordinary differential equations with variable coefficients. Fourier series with applications to partial differential equations such as potential, heat and wave equations.
Module content:
Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.
Minimum credits: 153
Module content:
The purpose of this module is to develop knowledge and understanding of engineering management principles and economic decision-making so that students can design, manage, evaluate and participate in engineering projects in the workplace. As such elements from engineering economics, project management and systems engineering are combined.
This module develops and assesses the students’ competence in terms of ECSA Exit Level Outcome 11 relating to Engineering Management.
Module content:
This module is given to Mining and Civil Engineering students, focused on the practical application of basic geological principles to engineering problems. The course covers basic rock identification, principles of stratigraphy and landscape formation, and engineering applications of geology such as mining, slope stability, and civil applications. Practicals cover geological maps and profiles, as well as basic rock identification.
Module content:
Two exit-level Graduate Attributes (GAs) of ECSA are addressed and each must be passed in the same semester. GA7: Demonstrate critical awareness of the impact of engineering activity on the social, industrial and physical environment. The history of engineering globally and in South Africa. Most important engineering projects globally and in South Africa. The impact of technology on society. Occupational and public health and safety. Occupational Health and Safety Act. Impacts on the physical environment. The personal, social, cultural values and requirements of those affected by engineering activity. The combination of social, workplace (industrial) and physical environmental factors are appropriate to the discipline of the qualification. GA8: Demonstrate competence to work effectively on a small project as an individual, in teams and in multidisciplinary environments. Identifies and focuses on objectives. Works strategically. Executes tasks effectively. Delivers completed work on time. Effective teamwork: Makes individual contribution to team activity; performs critical functions; enhances work of fellow team members; benefits from support of team members; communicates effectively with team members; delivers completed work on time. Multidisciplinary work by the following: Acquires a working knowledge of co-worker’s discipline; uses a systems-engineering approach; communicates across disciplinary boundaries. Report and presentation on team project. Tasks require co-operation across at least one disciplinary boundary. Students acquire a working knowledge of co-worker’s discipline. Students communicate between disciplinary boundaries.
Module content:
Introduction: Liquids and gases, pressure, viscosity, temperature. Fluid statics and pressure measurement. Introduction to control volume method for mass, momentum and energy conservation. Bernoulli equation. Differential approach: Navier-Stokes and continuity equations. Similarity and dimensional analysis. Flow in pipes and channels: friction coefficients and Reynolds number, pressure drop; laminar, turbulent and transitional flow. Flow over bodies: drag and lift. Experimental techniques in fluid mechanics.
Module content:
Minerals processing in perspective (economic importance, economic nature of mineral deposits, mineral properties and analysis, mineral processing functions). Liberation analysis (importance and measurement of liberation; particle size analysis). Comminution (theories and principles, crushers, grinding mills). Screening and classification (industrial screening, cyclones). Concentration processes (gravity concentration, dense medium concentration). Froth flotation.
Module content:
Mine ventilation methods; primary and secondary ventilation methods, ventilation strategies for coal and hard rock mining environments including base metal mines. Mine development ventilation methods, mine air control, different types of fans including fan performances and air dilution calculations.
Module content:
Surface mining methods: Introduction, classification of ore reserves and terminology. Earth moving: Loading shovels and methods, haulage trucks, productivity and tires, introduction to bucket wheel excavators, conveyor systems and in-pit crushers, in-pit crushing-conveying system, application of draglines and terminology. Introduction to mine planning, mine development phases, block modelling, methods of sequencing, stripping ratios and breakeven ratios. Introduction to mining environment, rehabilitation and closure, integrated environmental management, environmental impact studies, water management and rehabilitation planning and costing.
Module content:
Mining 320 provides an overview of mining by covering the following subject-matter: history of mining in South Africa, underground mining systems, and a brief overview of mine environmental control and mine strata control. Then the module covers general mine layouts, mine plan reading, mine surveying, electricity supply, transport systems, water management systems, and mine fires. This feat is achieved through the study of various mining methods and case studies.
Module content:
The mining industry requires that students are exposed to the mining industry by visiting a collection of mines with the purpose of familiarising them with current trends in mining practice and mining methods. This module hopes to provide a “snapshot” of the mining industry as it is at the time of the tour. This tour requires attendance and participation in five one-day visits to mines. The excursions are organised during the first semester of the third year, and take place during the July recess at the end of the semester. Students must, before the second semester commences, submit a group report on the visits during the second semester.
Module content:
The mining industry requires students to become exposed to mining by working on mines during the December recess period at the end of the second academic year. The student is required to work for a minimum period of six weeks on a mine, and then compile a report on the work completed for submission at a prescribed date in the first semester of the third academic year.
Module content:
The importance of improved safety standards, cost effectiveness and productivity has driven technical mining personnel to examine all facets of their operations. Increasingly, it has been realized that an efficient drilling and blasting program will impact positively throughout the mining operation, from loading to maintenance, hauling to crushing, ground support to scaling and grade control to recover with an invariable increase in the overall profitability through technical advanced projects. Through the safe, efficient and innovative use of explosives for rock breaking the mining engineer will make a positive contribution to the overall mining operation. Due to the nature of the topics discussed in this module, a number of case studies are used to emphasise the safe handling, application and destruction of explosives. The Mine Health and Safety Act is dealt with and the Explosives Act receives specific attention. The module also covers aspects of non-explosive rock breaking and cutting.
Module content:
Reporting technical information: typical report structure, literature survey, data presentation (tables, graphs, diagrams), referencing, presenting results, conclusions, and recommendations. Identification of a suitable subject for the Final Year Project. Planning of project execution.
Module content:
Three dimensional stress and strain tensors and linear elasticity. The state of stress in the earth’s crust. Rock material and rock mass failure criteria. The response of the rock mass to underground excavations, energy release rate and excess shear stress. Mining induced seismicity, rock bursts and measures to minimise mining induced seismicity so as to improve SHE.
Geotechnics include understanding discontinuities in rock mass, stereo nets, cohesion and friction. Rock behaviour pertaining to excavations, understanding plane, circular and wedge failures, Rock slope safety factors. Slope stabilisation, neutral line theory, effects of water in a slope, monitoring of slopes and instruments available for slope stability monitoring, Risk concepts pertaining to slopes and a case study is discussed. Aspects of the Mine Health and Safety Act are also dealt with.
Minimum credits: 138
Module content:
This module is offered to mining engineering students, and addresses the processes that formed mineral deposits, and the geological approach to exploiting such deposits. The module covers the principles of ore-forming processes and geological environments of ore formation, ore classification schemes, the geometry and geostatistical evaluation of ore bodies, the principles of rock deformation, stress, strain and rheology, joints, fault systems, folds and interference folding, tectonic fabrics, shear zones, and progressive deformation. The practicals cover the identification and classification of ore deposits, and the recognition and mitigation of geologically related mining hazards such as faults, shears and folding.
Module content:
Requirements to maintain continued competence and to keep abreast of up-to date tools and techniques. ECSA code of conduct, Continuing Professional Development, ECSA outcomes, ECSA process and reasons for registration as CEng and PrEng. Displays understanding of the system of professional development. Accepts responsibility for own actions. Displays judgment in decision making during problem solving and design. Limits decision making to area of current competence. Reason about and make judgment on ethical aspects in case study context. Discerns boundaries of competence in problem solving and design. Case studies typical of engineering practice situations in which the graduate is likely to participate.
Module content:
Refrigeration: Elementary refrigeration principles, including concepts and methods, chilled water systems, including cooling distribution methods. Elementary mine ventilation planning, basic planning parameters and elementary mine ventilation economics and the impact of incorrect design and applications on safety and health. Mine gases, their origin and gas/coal dust explosions. Aspects of the Mine Health and Safety act are also dealt with.
Module content:
The objective is for the student to understand fundamental economic theory pertaining to the mineral and mining industry and its overall effects on the broader South African economy. The student will be able to interpret and understand company annual results. The student should be able to understand and apply the SAMREC/SAMVAL code during the evaluation and classification of resources and reserves. The student should understand the effect of supply and demand pertaining to the mineral and mining industry (micro and macroeconomic factors). To understand the unique aspects related to marketing of minerals with reference to the cyclic nature of the industry. Apply economic and engineering reasoning to specific problems in the minerals and mining industry so as to analyse and interpret the opportunities and threats facing this industry. To understand and apply the fundamentals of technical mine valuation, including mineral rights, prospecting methods, sampling, mass and mineral content of ore as well as management and control factors. The latter include controlling and managing of widths, stoping width versus tramming and milling width, ore dilution, mine call factor and cut-off grade.
Module content:
Specific mining techniques. Shafts: Types, methods and equipment for sinking; economic considerations. Tunneling: Design, development techniques and equipment. Design and construction of large excavation. Design, construction, reinforcing and repair of ore passes. Fires in gold and coal mines: Causes, prevention, detection, combating and insurance. Flooding: Water sources, results, dangers, sealing and control.
Module content:
Selected topics in operational risk management; Introduction and context; Risk management concepts, words, and models; Risk assessment principles; Human factors; Leading practice; Layered risk management (including identification, assessment and control); Scoping risk assessment; Integrating outcomes into the business; ORM journey tool; Line management and OR; Safety and mineral Statistical Structures and Codes; Legal aspects.
Module content:
This module entails the completion of an engineering project from concept to delivery. The student must demonstrate mastery of a mining engineering project. The module focuses on the formulation of a mining engineering problem, the development of appropriate extraction methodologies, project planning and management and then completion of a technical project of a given nature, scope and complexity.
Students are required to design a mine at the conceptual business case level. Students are given a surface plan and borehole data from which they have to design a mine in teams of 3 – 5 students. They have access to a mining engineer in industry to assist with advice. The design has to incorporate a market analysis, layout design, working method, surface layout, environmental impacts and financial analysis. The design is submitted in book form and each team member has to do a presentation of the design.
Module content:
The project involves the execution of an analytical and/or experimental research project under guidance of a lecturer. During the second semester of the third year of study students must select a suitable research topic, to be approved by the Head of the Department. Data for the approved project will be collected during the practical training period during the summer recess at the end of the third year of study. A comprehensive and detailed project report must be compiled and submitted for evaluation at a prescribed date in the first semester of the fourth year. The student must also prepare a presentation of the project for an oral examination at the end of the semester.
Module content:
Elementary mine layout design, pillar design and underground excavation support and their effects on SHE. Stress analysis of mining layouts and mine layout optimisation. This module covers rock mechanics practice applicable in underground hard rock mining environments at shallow, moderate and great depth.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App