Yearbooks

Program: BSc Human Physiology

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
02133408 Faculty of Natural and Agricultural Sciences
Credits Duration NQF level
Minimum duration of study: 3 jaar Totale krediete: 428 NQF level:  07

Admission requirements

  • The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement, a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution, and a candidate who is a graduate of another faculty at the University of Pretoria.
  • Life Orientation is excluded in the calculation of the Admission Point Score (APS).
  • Grade 11 results are used for the conditional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science 

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

5

C

5

C

5

C

32

*  Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.

Candidates who do not comply with the minimum admission requirements for BSc (Human Physiology), may be considered for admission to the BSc – Extended programme -- Biological and Agricultural Sciences. The BSc – Extended programme takes a year longer than the normal programme to complete.

BSc – Extended Programme – Biological and Agricultural Sciences

 Minimum requirements

Achievement level

English Home Language or English First Additional Language

Mathematics

Physical Science  

APS

NSC/IEB

AS Level

NSC/IEB

AS Level

NSC/IEB

AS Level

4

D

4

D

4

D

26

 

Other programme-specific information

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the relevant head of department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the relevant head of department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the relevant head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the relevant head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.

  • A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
  • A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
  • Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
  • Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed in writing.
  • Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senate Appeals Committee.
  • Any decision taken by the Senate Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Minimum krediete: 140

Fundamental modules = 12
Core modules           =   128

Additional information:
Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Students intending to apply for the MBChB, or the BChD places that become available in the second semester, may only enrol for FIL 155(6), MGW 112(6) and  MTL 180(12) with the understanding that:

  • they obtained an APS of at least 34 and passed grade 12 Mathematics with at least 70%; and
  • they may defer doing WTW 134 in the first semester, however, should they not be selected and want to continue with a BSc programme, WTW 165 must be taken in the second semester of the first year.

Please note: ANA modules can only be taken by BSc (Medical Science) students.

Fundamental modules

Core modules

  • Module-inhoud:

    Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

    Sien meer

  • Module-inhoud:

    Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

    Sien meer

  • Module-inhoud:

    General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

    Sien meer

  • Module-inhoud:

    Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

    Sien meer

  • Module-inhoud:

    Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions, extensions and modifications of basic principles.. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Genetic linkage and chromosome mapping. Chromosome variation.

    Sien meer

  • Module-inhoud:

    The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

    Sien meer

  • Module-inhoud:

     Introduction to the molecular structure and function of the cell. Basic chemistry of the cell. Structure and composition of prokaryotic and eukaryotic cells. Ultrastructure and function of cellular organelles, membranes and the cytoskeleton. General principles of energy, enzymes and cell metabolism. Selected processes, e.g. glycolysis, respiration and/or photosynthesis. Introduction to molecular genetics: DNA structure and replication, transcription, translation. Cell growth and cell division.

    Sien meer

  • Module-inhoud:

    Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.

    Sien meer

  • Module-inhoud:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. 
    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

    Sien meer

  • Module-inhoud:

    *Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 165 does not lead to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 165 is offered in English in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.

    Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration, matrices, solutions of systems of equations. All topics are studied in the context of applications.

    Sien meer

  • Module-inhoud:

    Animal classification, phylogeny organisation and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive,
    respiratory, excretory, circulatory and digestive systems in various animal phyla. In-class discussion will address the sustainable development goals #3, 12, 13, 14 and 15 (Good Health and Well-being. Responsible Consumption and Production, Climate Action, Life Below Water, Life on Land).

    Sien meer

Minimum krediete: 144

Core modules    =  120
Elective modules   =    24

Additional information:
Single major track:
Electives must be chosen from BOT 251, BOT 261, CMY 282, CMY 283, CMY 284, CMY 285, MBY 251, MBY 261, ZEN 251, ZEN 261.

Dual major track:

  • Human Physiology and Biochemistry combination: Students must take MBY 251 and 261.
  • Human Physiology and Chemistry combination: Please discuss options with Head of the Department of Physiology.
  • Human Physiology and Genetics combination: Students must take MBY 251 and MBY 261.
  • Human Physiology and Microbiology combination: Students must replace BCM 262 with MBY 262. Students must take MBY 251 and MBY 261.
  • Human Physiology and Pharmacology combination: No 200-level prerequisites for 300-level Pharmacology modules, students must register for other 200-level elective modules (24 credits).
  • Human Physiology and Plant Science combination: Please discuss options with Head of the Department of Plant and Soil Sciences.
  • Human Physiology and Zoology combination: Please discuss options with Head of the Department of Zoology.

Core modules

  • Module-inhoud:

    Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes and in clinical pathology as biomarkers of diseases. Introduction to practical laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules, enzyme activity measurements . Processing and presentation of scientific data.

    Sien meer

  • Module-inhoud:

    Carbohydrate structure and function. Blood glucose measurement in the diagnosis and treatment of diabetes. Bioenergetics and biochemical reaction types. Glycolysis,  gluconeogenesis, glycogen metabolism, pentose phosphate pathway, citric acid cycle and electron transport. Total ATP yield from the complete oxidation of glucose. A comparison of cellular respiration and photosynthesis. Practical techniques for the study and analysis of metabolic pathways and enzymes. PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques. Scientific method and design. 

    Sien meer

  • Module-inhoud:

    Biochemistry of lipids, membrane structure, anabolism and catabolism of lipids.  Total ATP yield from the complete catabolism of lipids. Electron transport chain and energy production through oxidative phosphorylation. Nitrogen metabolism, amino acid biosynthesis and catabolism. Biosynthesis of neurotransmitters, pigments, hormones and nucleotides from amino acids. Catabolism of purines and pyrimidines. Therapeutic agents directed against nucleotide metabolism. Examples of inborn errors of metabolism of nitrogen containing compounds. The urea cycle, nitrogen excretion. Practical training in scientific reading skills: evaluation of a scientific report. Techniques for separation analysis and visualisation of biological molecules. Hypothesis design and testing, method design and scientific controls.

    Sien meer

  • Module-inhoud:

    Biochemistry of nutrition and toxicology. Proximate analysis of nutrients. Review of energy requirements and expenditure, starvation, marasmus and kwashiorkor. Respiratory quotient. Requirements and function of water, vitamins and minerals. Interpretation and modification of RDA values for specific diets, eg growth, exercise, pregnancy and lactation, aging and starvation. Interactions between nutrients. Cholesterol, polyunsaturated, essential fatty acids and dietary anti-oxidants. Oxidation of fats. Biochemical mechanisms of water- and fat-soluble vitamins and assessment of vitamin status. Mineral requirements, biochemical mechanisms, imbalances and diarrhoea. Biochemistry of xenobiotics: absorption, distribution, metabolism and excretion (ADME); detoxification reactions: oxidation/reduction (Phase I), conjugations (Phase II), export from cells (Phase III); factors affecting metabolism and disposition. Examples of genetic abnormalities, phenotypes and frequencies. Examples of toxins: biochemical mechanisms of common toxins and their antidotes. Natural toxins from fungi, plants and animals: goitrogens, cyanogens, cholineesterase inhibitors, ergotoxin, aflatoxins  Practical training in scientific writing skills: evaluating  scientific findings. Introduction to practical techniques in nutrition and toxicology. Experimental design and calculations in experiments: determining nutritional value of metabolites and studying the ADME of toxins.

    Sien meer

  • Module-inhoud:

    Orientation in physiology, homeostasis, cells and tissue, muscle and neurophysiology, cerebrospinal fluid and the special senses.
    Practical work: Practical exercises to complement the theory.

    Sien meer

  • Module-inhoud:

    Body fluids; haematology; cardiovascular physiology and the lymphatic system. Practical work: Practical exercises to complement the theory.

    Sien meer

  • Module-inhoud:

    Structure, gas exchange and non-respiratory functions of the lungs; structure, excretory and non-urinary functions of the kidneys, acid-base balance, as well as the skin and body temperature control.
    Practical work: Practical exercises to complement the theory.

    Sien meer

  • Module-inhoud:

    Nutrition, digestion and metabolism; hormonal control of the body functions and the reproductive systems. Practical work: Practical exercises to complement the theory.

    Sien meer

  • Module-inhoud:

    The chemical nature of DNA. The processes of DNA replication, transcription, RNA processing, translation. Control of gene expression in prokaryotes and eukaryotes.  Recombinant DNA technology and its applications in gene analysis and manipulation.

    Sien meer

  • Module-inhoud:

    Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.

    Sien meer

Elective modules

  • Module-inhoud:

    Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.

    Sien meer

  • Module-inhoud:

    Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing abiotic stress tolerant and disease resistant plants. Practicals: Basic laboratory skills in plant physiology; techniques used to investigate nitrogen metabolism, carbohydrate metabolism, pigment analysis, water transport in plant tissue and response of plants to hormone treatments. 

    Sien meer

  • Module-inhoud:

    Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.

    Sien meer

  • Module-inhoud:

    Statistical evaluation of data in line with ethical practice, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry. Examples throughout the course demonstrate the relevance of the theory to meeting the sustainable development goals of clean water and clean, affordable energy. 

    Sien meer

  • Module-inhoud:

    Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to 13C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives Training in an ethical approach to safety that protects self, others and the environment is integral to the practical component of the course.

    Sien meer

  • Module-inhoud:

    Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, chemistry of the main group elements, electrochemical properties of transition metals in aqueous solution, industrial applications of transition metals. Fundamentals of spectroscopy and introduction to IR spectroscopy. During practical training students learn to acquire and report data ethically. Practical training also deals with the misuse of chemicals and appropriate waste disposal to protect the environment and meet the UN sustainable development goals.

    Sien meer

  • Module-inhoud:

    Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis.  Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.

    Sien meer

  • Module-inhoud:

    Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.

    Sien meer

  • Module-inhoud:

    Primary sources of migroorganisims in food. Factors affecting the growth and survival of microorganisms in food. Microbial quality, spoilage and safety of food. Different organisms involved, their isolation, screening and detection. Conventional approaches, alternative methods rapid methods. Food fermentations: fermentation types, principles and organisms involved.

    Sien meer

  • Module-inhoud:

    Origin and extent of modern invertebrate diversity; parasites of man and domestic animals; biology and medical importance of arachnids and insects; insect life styles; the influence of the environment on insect life histories; insect herbivory; predation and parasitism; insect chemical, visual, and auditory communication. Examples used in the module are relevant to the sustainable development goals of Life on Land and Good Health and Well-being.

    Sien meer

  • Module-inhoud:

    Introduction to general vertebrate diversity; African vertebrate diversity; vertebrate structure and function; vertebrate evolution; vertebrate relationships; aquatic vertebrates; terrestrial ectotherms; terrestrial endotherms; vertebrate characteristics; classification; structural adaptations; habits; habitats; conservation problems; impact of humans on other vertebrates. The module addresses the sustainable development goals of Life below Water and Life on Land.

    Sien meer

Minimum krediete: 144

Core modules       =   72
Elective modules  =   72

Additional information:
Single major track:

  • Electives in the third year must be chosen from the listed Biochemistry, Chemistry, Genetics, Microbiology, Plant science, Zoology or a combination of Pharmacology and Biochemistry and/or Genetics modules.
  • NOTE: Students interested in pursuing postgraduate studies in occupational health and safety must take FLG 322 Industrial Physiology (18 credits). The balance of their elective credits may be chosen from 300-level modules in Biochemistry or Genetics or a combination of Pharmacology (FAR 381 and 382) and Biochemistry and/or Genetics.
  • Any other student interested in the field of occupational health and safety may take FLG 322 as an elective.

Dual major track:

  • Human Physiology and Biochemistry combination: Students must take BCM 356, BCM 357, BCM 367, BCM 368.
  • Human Physiology and Chemistry combination: Please discuss options with Head of the Department of Physiology.
  • Human Physiology and Genetics combination: Students must take GTS 351, GTS 354, GTS 367, GTS 368.
  • Human Physiology and Microbiology combination: Students must take MBY 351, MBY 355, MBY 364, MBY 365.
  • Human Physiology and Pharmacology combination: Students must take FAR 381 and 382 combined with 300-level modules in Biochemistry and/or Genetics to a total of 72 credits.
  • Human Physiology and Plant Science combination: Please discuss options with Head of the Department of Plant and Soil Sciences.
  • Human Physiology and Zoology combination: Please discuss options with Head of the Department of Zoology.
  • NOTE: Students interested in pursuing postgraduate studies in occupational health and safety must also take FLG 322 Industrial Physiology (18 credits). In order to obtain the degree with a dual major in any of the above, the stipulated electives must be taken. Any student interested in the field of occupational health and safety may also take FLG 322 as an elective.

Core modules

  • Module-inhoud:

    Overview of higher cognitive functions and the relations between psyche, brain and the immune system. Practical work: Applied practical work with specific examples drawn from South African case studies taught within the framework of the UN Sustainable Development Goal 3 (Good Health and Well-being).

    Sien meer

  • Module-inhoud:

    During this module the biology of cellular processes such as the cell cycle, cell death, migration and their related cellular signalling pathways will be discussed as well as their role in early stage embryology and age-related pathologies. Practical work: Exposure to applied molecular biology techniques with specific examples drawn from South African case studies taught within the framework of the UN Sustainable Development Goal of Good Health and Well-being (Sustainable Development Goal 3).

    Sien meer

  • Module-inhoud:

    Mechanisms of muscle contraction and energy sources. Cardio-respiratory changes, thermo-regulation and other adjustments during exercise. Use and misuse of substances to improve performance. Practical work: Applied practical work with exercise descriptions for the South African context taught within the framework of the UN Sustainable Development Goal 3 (Good Health and Well-being).

    Sien meer

  • Module-inhoud:

    Integration of all the human physiological systems. Practical work: Applied practical work.

    Sien meer

Elective modules

  • Module-inhoud:

    Structure, function, bioinformatics and biochemical analysis of (oligo)nucleotides, amino acids, proteins and ligands – and their organisation into hierarchical, higher order, interdependent structures. Principles of structure-function relationships, protein folding, sequence motifs and domains, higher order and supramolecular structure, self-assembly, conjugated proteins, post-translational modifications. Molecular recognition between proteins, ligands, DNA and RNA or any combinations. The RNA structural world, RNAi, miRNA and ribosomes. Cellular functions of coding and non-coding nucleic acids. Basic principles of mass spectrometry, nuclear magnetic resonance spectroscopy, X-ray crystallography and proteomics. Protein purification and characterisation including, pI, molecular mass, amino acid composition and sequence. Mechanistic aspects and regulation of information flow from DNA via RNA to proteins and back. Practical training includes hands-on nucleic acid purification and sequencing, protein production and purification, analysis by SDS-PAGE or mass spectrometry, protein structure analysis and 3D protein modelling.

    Sien meer

  • Module-inhoud:

    Regulation of metabolic pathways. Analysis of metabolic control. Elucidation of metabolic pathways with isotopes. Metabolomics. Coordinated regulation of glycolysis/gluconeogenesis and glycogen breakdown/synthesis. Enzyme defects in metabolism and consequences. Hormonal regulation and integration of mammalian metabolism. Regulation of fuel metabolism after a meal, period between meals and starvation. Metabolic adaptions during diabetes. Obesity and the regulation of body mass. Obesity, metabolic syndrome and Type 2 diabetes (T2D). Management of T2D with diet, exercise and medication. Practical sessions cover tutorials on case studies and biochemical calculations, isolation of an enzyme, determination of pH and temperature optima, determination of Km and Vmax, enzyme activation and enzyme inhibition. 

    Sien meer

  • Module-inhoud:

    Visualising cell structure and localisation of proteins within cells. Cell ultrastructure. Purification of subcellular organelles. Culturing of cells. Biomembrane structure. Transmembrane transport of ions and small molecules and the role of these processes in disease. Moving proteins into membranes and organelles. Vesicular traffic, secretion, exocytosis and endocytosis. Cell organisation and movement motility based on the three types of cytoskeletal structures including microfilaments, microtubules and intermediate filaments as well as their associated motor proteins. Cell-cell and cell-matrix adhesion through corresponding proteins and morphological structures. Practical training includes tutorials on cytometry and microscopy, mini-research projects where students are introduced and guided through aspects of research methodology, experimental planning techniques associated with cellular assays, buffer preparation, active transport studies in yeast cells, structure-function analyses of actin and binding partners.

    Sien meer

  • Module-inhoud:

    Molecular mechanisms behind exogenous and endogenous diseases. Foundational knowledge of the immune system, with innate-, adaptive- and auto-immunity (molecular mechanisms of the maintenance and failure of the recognition of foreign in the context of self in the mammalian body) being some of the key concepts. Molecular pathology and immunobiochemistry of exogenous diseases against viral, bacterial and parasitic pathogens with a focus on the human immunodeficiency virus (HIV), tuberculosis (TB) and malaria. Endogenous disease will describe the biochemistry of normal cell cycle proliferation, quiescence, senescence, differentiation and apoptosis, and abnormal events as illustrated by cancer. Tutorials will focus on immunoassays, vaccines, diagnostic tests for diseases and drug discovery towards therapeuticals. 

    Sien meer

  • Module-inhoud:

    Plant genetics and genomics: gene control in plants, epigenetics, co-suppression, forward and reverse genetics, structural and functional genomics. Plant development: flowering, genetics imprinting. Plant-environment interactions. Crop genetic modification: food security, GMO regulation, plant transformation, whole-chromosome transformation, synthetic biology, homologous recombination. Crop molecular markers: marker types, genotyping, QTL mapping, marker-assisted breeding. Future of crop biotechnology: applications of genomics, biopharming, genetical genomics, systems biology

    Sien meer

  • Module-inhoud:

    Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.

    Sien meer

  • Module-inhoud:

    Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. These techniques are discussed in terms of their use in environmental analysis and the value they contribute to meeting the UN sustainable development goals (#3,6 & 11). Instrumental electrochemistry. The relevance of electrochemistry to providing affordable and clean energy (UN SDG#7) is addressed.

    Sien meer

  • Module-inhoud:

    Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation). Practical: Laboratory sessions are designed to develop the rational thinking behind the design of organic chemistry experiments. An industrial project specifically prepares students for work in SA industry context and honours projects. As part of this practical programme the UN sustainable development goals must be considered in evaluating the best industrial process.

    Sien meer

  • Module-inhoud:

    Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, reactivity and reaction mechanisms, reaction types, acid-base concepts, non-aqueous solvents, special topics.

    Sien meer

  • Module-inhoud:

    Introduction, receptors, antagonism, kinetic principles, drugs that impact upon the autonomic and central nervous system, pharmacotherapy of hypertension, angina pectoris, myocardial infarction, heart failure, arrhythmias, and epilepsy. Diuretics, glucocorticosteroids, local anaesthetics, anaesthetic drugs, analgesics, iron and vitamins, oncostatics and immuno suppressants.

    Sien meer

  • Module-inhoud:

    Hormones, drugs that act on the histaminergic, serotonergic, and dopaminergic receptors. Pharmacotherapy of diabetes mellitus, schizophrenia, depression, obesity, anxiety, insomnia, gastro-intestinal diseases. Anticoagulants, antimicrobial drugs.

    Sien meer

  • Module-inhoud:

    Problem-orientated module, with the emphasis on occupational health and safety in the industrial environment. Integration of different physiological systems is required. Practical work: Exposure to occupational hygiene measurement techniques. *Students interested in pursuing postgraduate studies in OHS must take FLG 322.

    Sien meer

  • Module-inhoud:

    Regulation of gene expression in eukaryotes: regulation at the genome, transcription, RNA processing and translation levels. DNA elements and protein factors involved in gene control. The role of chromatin structure and epigenetic changes. Technology and experimental approaches used in studying eukaryotic gene control. Applications of the principles of gene control in eg cell signaling pathways, development cancer and other diseases in humans.

    Sien meer

  • Module-inhoud:

    Mechanisms involved in the evolution of genes, genomes and phenotypes. Comparison  of the molecular organisation of viral, archaea, bacterial and eukaryotic genomes. Genome project design, DNA sequencing methods and annotation. Molecular evolution. Phylogenetic inference. Applications of phylogenetics and evolutionary genomics research, including relevance to sustainable development goals for food security, good health and the biosphere.

    Sien meer

  • Module-inhoud:

    Genetic and phenotypic variation. Organisation of genetic variation. Random genetic drift. Mutation and the neutral theory. Darwinian selection. Inbreeding, population subdivision and migration. Evolutionary quantitative genetics. Population genomics. Human population genetics. Levels of selection and individuality. Arms races and irreversibility. Complexity. Applied evolution.

    Sien meer

  • Module-inhoud:

    Application of modern genetics to human variability, health and disease. Molecular origin of Mendelian and multifactorial diseases. The use of polymorphisms, gene mapping, linkage and association studies in medical genetics. Genetic diagnosis: application of cytogenetic, molecular and genomic techniques. Congenital abnormalities, risk assessment and genetic consultation. Prenatal testing, population screening, treatment of genetic diseases and gene-based therapy. Pharmacogenetics and cancer genetics. Ethical aspects in medical genetics.

    Sien meer

  • Module-inhoud:

    Introduction to the viruses as a unique kingdom inclusive of their different hosts, especially bacteria, animals and plants; RNA and DNA viruses; viroids, tumour viruses and oncogenes, mechanisms of replication, transcription and protein synthesis; effect on hosts; viral immunology; evolution of viruses.

    Sien meer

  • Module-inhoud:

    DNA replication and replication control. DNA recombination. DNA damage and repair. Genetics of bacteriophages, plasmids and transposons. Bacterial gene expression control at the transcriptional, translational and post-translational levels. Global regulation and compartmentalisation.

    Sien meer

  • Module-inhoud:

    Isolation of clonable DNA (genomic libraries, cDNA synthesis) cloning vectors (plasmids, bacteriophages, cosmids) plasmid incompatibility and control of copy number. Ligation of DNA fragments, modification of DNA end and different ligation strategies. Direct and indirect methods for the identification of recombinant organisms. Characterization (polymerase chain reaction, nucleic acid sequencing) and mutagenisis of cloned DNA fragments. Gene expression in Gram negative (E.coli) Gram positive (B.subtilis) and yeast cells (S.cerevisea). Use of Agrobacterium and baculoviruses for gene expression in plant and insect cells respectively. Applications in protein engineering, diagnostics and synthesis of useful products.

    Sien meer

  • Module-inhoud:

    Interactions between microbes and their abiotic environment; microbial interaction with other strains of the same and other species; microbial interactions across kingdoms; pathogenic interactions between microbes and plant or animal hosts; mutualistic interactions between microbes and their hosts; introduction to systems biology.

    Sien meer


Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences