Code | Faculty |
---|---|
12130004 | Faculty of Engineering, Built Environment and Information Technology |
Credits | Duration |
---|---|
Minimum duration of study: 4 years | Total credits: 576 |
All fields of study of the BEng degree have been accredited by the Engineering Council of South Africa (ECSA), and comply with the academic requirements for registration as a professional engineer. The programmes are designed in accordance with the outcomes-based model as required by the South African Qualifications Authority (SAQA). The learning outcomes and contents of the programmes have been compiled in accordance with the latest accreditation standards (PE-60 and PE-61) of ECSA, which also comply with the SAQA requirements, and which are summarised as follows:
Learning outcomes of the BEng degree:
A graduate in engineering should be able to apply the following skills on an advanced level:
Learning contents of the BEng programmes:
Six essential knowledge areas are included in the syllabi of the programmes. The typical representation of each knowledge area as a percentage of the total contents of an undergraduate programme is given in brackets ( ) in the list below. This percentage varies for the different study directions, but conforms in all instances to the minimum knowledge area content as stipulated by ECSA.
Knowledge areas:
Minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
5 | C | 6 | B | 6 | B | 35 |
* Cambridge A level candidates who obtained at least a D in the required subjects, will be considered for admission. International Baccalaureate (IB) HL candidates who obtained at least a 4 in the required subjects, will be considered for admission.
ENGAGE Programme minimum requirements | ||||||
Achievement level | ||||||
English Home Language or English First Additional Language | Mathematics | Physical Science | APS | |||
NSC/IEB | AS Level | NSC/IEB | AS Level | NSC/IEB | AS Level | |
4 | D | 5 | C | 4 | D | 25 |
Please note: For the Aeronautical Option, the themes of both the Design and the Project must be aeronautical-related.
With a few exceptions, most modules offered at the School of Engineering are semester modules having credit values of either 8 or 16.
A student may be permitted by the Dean, on recommendation of the relevant head of department, to register for an equivalent module in an alternate semester, although the module is normally offered to the student’s group in another semester, and providing that no timetable clashes occur.
Please note:
Promotion to the second semester of the first year and to the second year of study (Eng. 14)
Please note:
Promotion to the third year of study of the Four-year Programme, as well as to the third and the fourth years of study of the ENGAGE Programme. In case of the fourth year of study of the ENGAGE Programme, the words "first", "second" and "third" must be substituted with the words "second", "third" and "fourth" respectively. (Eng. 15)
Promotion to the fourth year of study of the Four-year Programme, as well as to the fifth year of study of the ENGAGE Programme. In case of the fifth year of study of the ENGAGE Programme, the words "second", "third" and "fourth" must be substituted with the words "third", "fourth" and "fifth" respectively. (Eng. 16)
Minimum credits: 150
Module content:
General introduction to inorganic, analytical and physical chemistry. Nomenclature of inorganic ions and compounds, stoichiometric calculations concerning chemical reactions, redox reactions, solubilities and solutions, atomic structure, periodicity. Molecular structure and chemical bonding using the VSEPR model. Principles of reactivity, electrochemistry, energy and chemical reactions, entropy and free energy.
Appropriate tutorial classes and practicals.
Module content:
Electrical quantities, units, definitions, conventions. Electrical symbols, ideal and practical current and voltage sources, controlled sources. Ohm’s law in resistive circuits, Kirchoff’s current and voltage laws, resistors in series and parallel circuits, voltage and current division, mesh current and node voltage methods. Circuit theorems: Linearity, superposition, Thevenin and Norton equivalent circuits, sources transformation, power calculation, maximum power transfer. Energy storage elements: current, voltage, power and energy in inductors and capacitors, inductors and capacitors in series and parallel. Ideal operational amplifiers and applications: inverting and noninverting amplifiers, summing amplifiers, current sources, integrators.
Module content:
Introductory mathematics: Symbols, exponents, logarithms, angles in degrees, radial measure, goniometry, differentiation, and integration. Motion along a straight line: position and displacement, acceleration. Vectors: adding vectors, components, multiplying vectors. Motion in two and three dimensions: projectile motion, circular motion. Force and motion: Newton’s Law, force, friction. Kinetic energy and work: work, power. Potential energy: Centre of mass, linear momentum. Collisions: impulse and linear momentum, elastic collisions, inelastic collisions. Rotation: kinetic energy of rotation, torque. Oscillations and waves: Simple harmonic motion, types of waves, wavelength and frequency, interference of waves, standing waves, the Doppler effect. Temperature, heat and the first law of thermodynamics.
Module content:
Social sciences: Perspectives on contemporary society
An introduction to long-standing questions about the nature of human societies and contemporary challenges. Topics to be discussed include globalisation and increasing connectedness; rising unemployment, inequality and poverty; rapid urbanisation and the modern city form; transformations in the nature of work; environmental degradation and tensions between sustainability and growth; shifts in global power relations; the future of the nation-state and supra-national governance structures; and possibilities for extending human rights and democracy. Critical questions are posed about modern selfhood, sociality, culture and identity against the background of new communications technologies, ever more multicultural societies, enduring gender, class and race inequities, and the emergence of new and the resurgence of older forms of social and political identity. These issues are approached from the vantage of our location in southern Africa and the continent, drawing on social science perspectives.
Module content:
Humanities: Text, culture and communication
Successful communication of ideas, values and traditions depends on understanding both the literal and implied meanings of texts. In this module students are introduced to a variety of texts, including original literary and visual texts, with a view to developing an understanding of how textual meanings have been constructed and negotiated over time. Students are encouraged to understand themselves as products of – and participants in – these traditions, ideas and values. Appropriate examples will be drawn from, among others, the Enlightenment, Modernism, Existentialism, Postmodernism and Post-colonialism.
Module content:
Freehand sketching covering the following: perspective, isometric and orthographic drawings. Drawing conventions, graphical techniques and assembly drawings. Evaluation of drawings and error detection. True lengths of lines, projections and intersections. Practical applications of these techniques. Introduction to computer-aided drawings, including dimensioning, crosshatching and detailing. Introduction to basic manufacturing processes including primary (casting, forging and extrusion) and secondary (drilling, turning, milling, grinding, broaching and sawing) manufacturing procedures.
Module content:
Introduction to materials: the family of materials, atomic structure and types of bonding, crystal types and space arrangement of atoms, directions and planes in crystals, defects in crystals, diffusion in solids. Mechanical properties of materials: stress and strain, mechanical testing (strength, ductility, hardness, toughness, fatigue, creep), plastic deformation, solid-solution hardening, recrystallisation.
Polymeric materials: polymerisation and industrial methods, types of polymeric materials and their properties. Corrosion of metals: mechanisms and types of corrosion, corrosion rates, corrosion control. The heat treatment of steel: Fe-C phase diagram, equilibrium cooling, hardening and tempering of steel, stainless steel. Composite materials: Introduction, fibre reinforced polymeric composites, concrete, asphalt, wood.
Module content:
Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar- and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 158, WTW 114, WTW 134, WTW 165.
Introduction to vector algebra. Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Indefinite integrals, integration.
Module content:
*This module is designed for first-year engineering students. Students will not be credited for more than one of the following modules for their degree: WTW 146, WTW 148 and WTW 124,
Vector algebra with applications to lines and planes in space, matrix algebra, systems of linear equations, determinants, complex numbers, factorisation of polynomials and conic sections. Integration techniques, improper integrals. The definite integral, fundamental theorem of Calculus. Applications of integration. Elementary power series and Taylor’s theorem. Vector functions, space curves and arc lengths. Quadratic surfaces and multivariable functions.
Module content:
*Attendance module only
The module is offered at the end of the first year of study and lasts at least eight days, during which training is given in the following workshops: electronic projects, panel wiring, electrical motors and switch gear, general machines, welding, turning and sheet metal work. Each student's progress is assessed after each workshop.
Minimum credits: 144
Module content:
Engineering systems are often subjected to variation, uncertainty and incomplete information. Mathematical statistics provides the basis for effectively handling and quantifying the effect of these factors. This module provides an introduction to the concepts of mathematical statistics and will include the following syllabus themes: data analysis, probability theory, stochastic modelling, statistical inference and regression analysis.
Module content:
This module is integrated into all undergraduate academic programmes offered by the Faculty. Main objectives: execution of a community project aimed at achieving a beneficial impact on a section of society; awareness of personal, social and cultural values and an understanding of social issues; and development of life skills. Assessment: project proposal, written progress reports, peer assessment, assessment by community, presentation, report presented in the form of a blog.
Module content:
Effective communication by engineers. Verbal, written and visual communication are all covered, with a focus on presentations and technical reports as the medium of communication. Effective communication in all three aspects is achieved with an understanding of the audience influence, the structure of information, the structuring of an argument and the effective use of language. Topics covered: Plagiarism, paraphrasing, correct referencing practices and distinguishing between information sources. Business emails and meetings. Body language. Graphical display of data in graphs and slides.
Module content:
Detailed exposure to manufacturing processes, and appropriate selection of manufacturing processes. Detailed exposure to machine elements, including belts, chains and bearings. Selection of standard components. Conceptual framework for design process including life cycle, ergonomics, component and material selection, manufacturing considerations, and evaluation of alternatives.
Module content:
Analyse statically determinate structures to obtain section forces and moments and stress distributions. Axial loading, pure shear, torsion and bending. Stress and strain transformations. Derivation of stress transformation equations. Mohr’s circle. Failure criteria. Fatigue strength design. Introduction to code design, safety factors. All analysis techniques are applied to the open-ended design of hoisting systems and ropes, symmetric beams, shafts, springs, bolts and welds.
Module content:
Spreadsheet applications: Formulas and calculations, named ranges, plotting and trend lines, goal seek, linear programming, importing and exporting data, data navigation and filtering. Programming fundamentals: Names and objects, conditional and unconditional looping, branching, functions, modules, packages, reading and writing data files, graphical output (plotting). Solving simple problems using a high level programming language to develop, code and debug programs. Solving complex problems by breaking it down into a number of simple problems using concepts such as functions, modules and available packages. Programming principles are developed through solving mathematics and physics problems.
Module content:
Kinetics of systems of particles, Newton’s 2nd law generalised for a system of particles, rate of change of momentum and angular momentum relations, work-energy relations, conservation laws, steady mass flow. Plane kinematics of rigid bodies, rotation, translation, general 2D motion, relative motion analysis. Moments and products of inertia. Plane kinetics of rigid bodies, equations of motion, rotation, translation, general 2D motion, work-energy relations. Vibration and time response.
Module content:
Application overview. Concepts: system, control mass, control volume, property, state, process, cycles, mass, volume, density, pressure, pure substances, property tables, ideal gases, work and heat, internal energy, enthalpy, specific heat capacity. First law of thermodynamics for control masses and control volumes. Conservation of mass. Processes: isothermal, polytropic, adiabatic, isentropic. Second law of thermodynamics and entropy for control masses and control volumes. Introduction to power cycles . Experimental techniques in thermodynamics.
Module content:
Linear algebra, eigenvalues and eigenvectors with applications to first and second order systems of differential equations. Sequences and series, convergence tests. Power series with applications to ordinary differential equations with variable coefficients. Fourier series with applications to partial differential equations such as potential, heat and wave equations.
Module content:
Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema. Multiple integrals, polar, cylindrical and spherical coordinates. Line integrals and the theorem of Green. Surface integrals and the theorems of Gauss and Stokes.
Module content:
Numerical integration. Numerical methods to approximate the solution of non-linear equations, systems of equations (linear and non-linear), differential equations and systems of differential equations. Direct methods to solve linear systems of equations.
Minimum credits: 160
Module content:
Programme and systems engineering
Concepts: Application of project management, systems thinking, systems approach, product, system and project life cycles, project phases and specification practices. Development models: stage-gate development, project charter, systems engineering models, systems engineering management and life cycle characteristics. Planning and Scheduling: task definition, work breakdown structures, duration estimation, Gantt charts, critical path, resource handling. Costs and Budgets: cost estimates, project life cycle costs, work authorisation. Control: project organisation. Legal: contracts, intellectual property. Case studies and semester project
Engineering Economics
Decision making in an engineering environment. Allocation of cost. Money-time relationships (discreet interest formulae, tables, financial calculator, Excel). Bases for comparison of alternatives (present worth, annual worth,). Decision making among alternatives before and after tax (useful lives equal to study period, useful lives different among alternatives).
Module content:
Transient response phenomena in RC, RL and RLC circuits: Natural response and step response. Alternating current (AC) circuits: Phasors, impedances, and power in AC circuits. The application of Ohm’s law, Kirchoff’s circuit theorems, matrix methods, and Thevenin and Norton equivalents to sinusoidal steady-state analysis. Three-phase circuits: Balanced three-phase circuits, star/delta configurations, and three-phase power transfer calculations. Magnetically coupled circuits: Mutual inductance, coupling factor, transformers, ideal transformers and autotransformers. Application of circuit theory to induction motors: basic principles of induction motors, equivalent circuit and analysis thereof, calculation of power and torque through application of Thevenin's theorem. Synoptic introduction to other types of motors.
Module content:
Two exit learning outcomes (ELO) of ECSA are addressed and each must be passed in the same semester. ELO7: Demonstrate critical awareness of the impact of engineering activity on the social, industrial and physical environment. The history of engineering globally and in South Africa. Most important engineering projects globally and in South Africa. The impact of technology on society. Occupational and public health and safety. Occupational Health and Safety Act. Impacts on the physical environment. The personal, social, cultural values and requirements of those affected by engineering activity. The combination of social, workplace (industrial) and physical environmental factors are appropriate to the discipline of the qualification. ELO8: Demonstrate competence to work effectively on a small project as an individual, in teams and in multidisciplinary environments. Identifies and focuses on objectives. Works strategically. Executes tasks effectively. Delivers completed work on time. Effective team work: Makes individual contribution to team activity; performs critical functions; enhances work of fellow team members; benefits from support of team members; communicates effectively with team members; delivers completed work on time. Multidisciplinary work by the following: Acquires a working knowledge of co-workers’ discipline; uses a systems engineering approach; communicates across disciplinary boundaries. Report and presentation on team project. Tasks require co-operation across at least one disciplinary boundary. Students acquire a working knowledge of co-workers discipline. Students communicate between disciplinary boundaries.
Module content:
Solid mechanics, kinematics of deformation, strain tensor, traction vector, stress tensor and stress resultants. Macroscopic and infinitesimal equilibrium equations. Hooke’s law for isotropic media. Strong form of Boundary Value Problem (BVP) of solid mechanics. Weak form of BVP of solid mechanics. Derivation of finite element equations using weighted residuals. Detail development of 1D elements with concepts extended to 2D and 3D. Manipulation of continuum and discrete equations using a high level programming language. Finite element modelling concepts that include Saint Venant’s principle, linear superposition, symmetry, anti-symmetry, verification and validation.
Module content:
Within the framework of system engineering the following themes are introduced: Ergonomics, pressure vessels (introduction to code design), structural design, welding and bonding, heat treatment, non-destructive testing, couplings, clutches, brakes, gears, contact stresses and lubrication. Safety factors are considered through all themes. Open-ended subsystem design using the following elements: welds, gears and gear systems.
Module content:
Computational dynamics analysis of mechanisms, linkages and cams. Structural computational analysis using finite element software. Systems engineering and functional analysis. Open-ended multidisciplinary design and design improvement of products and systems.
Module content:
Prescribed practical training in the industry during or at the end of the second year. The aim is exposure to engineering equipment and processes, working environment of craftsmen and personnel relations. Duration at least 240 hours of work. Perform case study on personnel management and submit together with a satisfactory report on the practical training, to the Faculty Administration within one week of registration. Attend two (2) industry visits in the first semester and two (2) industry visits in the second semester. Attend at least six (6) guest lectures through the year.
Module content:
Introduction of stress tensor. 3D stress and strain transformation. Eigenvalue/vector analysis for principal stresses and strains. Experimental strain measurements. Stress-strain relations. Strain energy. Thin-walled cylinders. Statically indeterminate stress systems. Bending stress, slope and deflection of beams, shear center, non-symmetric beams, composite beams, Castigliano’s theorem. Statically indeterminate beams. Buckling instability. Yield criteria. Elementary plasticity. Structural streel design SANS code. Fracture mechanics. Fatigue.
Module content:
Fluid mechanics: Introduction to fluid properties and fluid continuum concepts. Fluid statics and pressure. Control volume method for mass, momentum and energy conservation using integral approach. Bernoulli equation. Dimensional analysis and similarity. Flow in pipes and channels: friction coefficients and Reynolds number, pressure drop; laminar, turbulent and transitional flow. Experimental techniques in fluid mechanics.
Heat transfer: Introduction to heat transfer mechanisms, thermal properties of materials. Solution of the heat conduction equation for different boundary and initial conditions. Heat generation in a solid. Steady heat conduction. Thermal resistance networks describing conduction, radiation and convection.
Module content:
Third Law of Thermodynamics, availability and useful work. Ideal and real gases. Compressible flow: conservation laws, characteristics of compressible flow, normal shock waves, nozzles and diffusers. Power cycles: classification, internal combustion engine cycles (Otto and Diesel), vapour power cycles (Brayton, Rankine), refrigeration cycles (Reversed Carnot cycle, Reversed Brayton cycle, ammonia absorption cycle) and heat pump cycles. Mixtures of gases: perfect gas mixture, water/air mixtures and processes (psychrometry). Heating and cooling load calculations, basic refrigeration and air-conditioning systems. Combustion: fuels, air-fuel ratios, heat of formation, combustion in internal combustion engines.
Module content:
Introduction to vibration: basic concepts, classification, modelling elements. Single degree of freedom systems: undamped and damped free vibration, undamped and damped harmonic motion, non-periodic excitation, numerical integration. Multidegree of freedom systems: discretisation, eigenproblem, co-ordinate coupling. Vibration control: balancing, isolation, absorbers. Vibration and sound measurement: signal analysis, modal testing, vibration monitoring. Continuum systems: string, bar, rod. Sound and noise: metrics, measurement, legislation.
Minimum credits: 160
Module content:
Requirements to maintain continued competence and to keep abreast of up-to date tools and techniques. ECSA code of conduct, Continuing Professional Development, ECSA outcomes, ECSA process and reasons for registration as CEng and PrEng. Displays understanding of the system of professional development. Accepts responsibility for own actions. Displays judgment in decision making during problem solving and design. Limits decision making to area of current competence. Reason about and make judgment on ethical aspects in case study context. Discerns boundaries of competence in problem solving and design. Case studies typical of engineering practice situations in which the graduate is likely to participate.
Module content:
Introduction to control systems. Modelling of dynamic systems. Transfer functions. Block diagrams and block diagram algebra. Linearisation of non-linear systems. Disturbance signals. Steady-state accuracy. Control systems characteristics. Analysis of control systems using Laplace transformations. Root loci. Bode diagrams. Design of compensators using bode diagram and root locus design techniques. Introduction to sampled data control systems. The Z-transsorm. Implementation of controllers on a computer. Controls laboratory.
Module content:
A fast review of partial differential equations, introduction to continuum mechanics, continuity equation, momentum equation, Navier- Stokes equation, energy equation, boundary conditions in thermal fluid systems, finite difference method, linear and non-linear partial differential equations, introduction to finite volume method (FVM), FVM for diffusion problems, FVM for convection-diffusion problems, introduction to pressure-velocity coupling in FVM, SIMPLE algorithm, introduction to computational fluid dynamics (CFD) software packages and their abilities, using CFD commercial software packages to solve thermal-fluid engineering problems.
Module content:
A comprehensive design and synthesis of components and systems relating to the mechanical engineering discipline. The design process includes aspects such as identifying and formulating the problem, functional and requirement analysis, conceptual design, detail design and analysis, ensuring that design meets applicable standards, codes of practice and legislation, techno-economic analysis (e.g. cost analysis) and considering the impacts and benefits of the design (e.g. social, environmental, health and safety). Professional and general communication of the design through written and oral communication.
Module content:
During or at the end of the third year of study, students in Mechanical Engineering undergo prescribed practical training in the industry. The purpose is the execution of small projects on engineering assistant level with exposure to the various relevant functions in the organisation. The duration is at least 240 hours of work. A case study on occupational health and safety must be done in this period and submitted to the department together with a satisfactory report on the practical training within one week of registration. Students must also attend two (2) industry visits in the first semester and two (2) industry visits in the second semester as well as attend at least six (6) guest lectures through the year.
Module content:
The module involves the management of the execution of a project that produces knowledge and understanding of a phenomenon, conclusions and a recommended course of action. The project is undertaken under the supervision of a staff member with the student ultimately taking responsibility for the management of and execution of the project. The student should be able to demonstrate competence in designing and conducting investigations and experiments and adherence to well defined time-lines and work breakdown structures. An acceptable process consists of but is not restricted to: (a) planning and conducting of investigations and experiments; (b) conducting of a literature search and critically evaluating material. The student should be able to demonstrate competence in engaging in independent learning through well-developed skills by: (a) reflecting on own learning and determining learning requirements and strategies; (b) sourcing and evaluating information; (c) determining learning requirements and strategies; (d) accessing, comprehending and applying knowledge acquired outside formal instruction; (e) critically challenging assumptions and embracing new thinking as well as communicating progress on a regular basis.
Module content:
The module involves the management of the execution of a project that produces knowledge and understanding of a phenomenon, conclusions and a recommended course of action. The project is undertaken under the supervision of a staff member with the student ultimately taking responsibility for the management of and execution of the project. This module follows onto MSC 412 and deals with the same topic in the same year. The student should be able to demonstrate competence in designing and conducting investigations and experiments and adherence to well defined time-lines and work breakdown structures. An acceptable process consists of but is not restricted to: (a) understanding of the stated problem, (b) developing a work breakdown structure, (c) performing the necessary analyses; (d) selecting and using appropriate equipment or software; (e) construction and instrumentation of an experimental set-up; (f) taking measurements; (g) analysing, interpreting and deriving information from data; (h) drawing conclusions based on evidence; (i) communicating the purpose, process and outcomes in a technical report, presentation and poster.
Module content:
Navier-Stokes and continuity equations. Euler equations, momentum equations. Conduction in two dimensions. Similarity and dimensional analysis. Unsteady heat transfer. Convective heat transfer: forced convection (external and internal), natural convection. Thermal radiation. Heat exchangers: classification, Parallel flow and counterflow heat exchangers; double-pass, multi-pass and cross-flow heat exchangers; LMTD method, Effectiveness-NTU method, selection of heat exchangers
Module content:
Rotary Turbomachines: Fundamental principles of fluid dynamics and thermodynamics applicable to the rotating turbomachinery components i.e. gas and steam turbines, compressors, hydraulic turbines, and pumps. Classifications and basic components in turbomachines. Euler equations for turbines, compressors, and pumps. Estimations of work and power, and thermal energy losses and efficiencies in turbomachinery components. Basic theory for wind turbine power and Betz's method.
Power Cycles: Fundamental principles of fluid dynamics and thermodynamics applicable to the steam and gas turbine power cycles, internal combustion engine cycles, and reciprocating compressor cycles. Basic components in steam and gas turbine power plants. Power estimations in conventional power cycles, combined cycles, binary cycles, cogeneration plants, and organic Rankine cycles. Thermal energy losses and efficiencies in power cycles. Air-flow duct network and fan selection curves for duct system
Module content:
Flow through porous media is relevant to applications such as internal combustion engines, thermal insulation engineering, electronics cooling, filtration, water movement in geothermal reservoirs, heat pipes, underground spreading of chemical waste, nuclear waste repository, geothermal engineering, grain storage, enhanced recovery of petroleum reservoirs and biological science. Introduction to the physical models used in the study of fluid flow and heat transfer in porous materials. Understanding of the transport mechanisms.
Module content:
Power supplies: How various voltage levels are obtained from a single source. Sensors and Actuators: Basics behind the most common actuators and sensors. Analogue: The use of MOSFETS, transistors, op-amps, diodes. Digital: Basic understanding of digital communication. Sampling theory: The effect of aliasing and the design of anti-aliasing filters. Programming: Program a PIC microcontroller using C. Control: Implementation of PID and fuzzy logic control in discrete time systems.
Module content:
Fundamentals of Thermal Radiation; blackbody radiation, radiative properties, Kirchhoff’s law. Radiation Heat Transfer; the view factor, gray surfaces, radiation shields. Boiling and condensation; pool and film boiling, film condensation, dropwise condensation. Heat exchangers; types, analysis, design, and selection. Mass transfer: Fick’s Law, mass diffusion, mass convection, simultaneous heat and mass transfer, porous catalysts.
Module content:
Introduction: Definition and objectives, statistical concepts. Mathematics of failure:
Reliability concepts, fitting distribution to failure data. Maintenance management:
Investment decisions, maintenance profit impact. Maintenance structure: Preventive, time based, condition based, corrective, design out. Data analysis: Renewable, repairable systems, Laplace trend test, analysis methodology. Optimizing maintenance strategies: Replacement/overhaul age, inspection frequencies, capital replacement, simulation. Reliability-Centred Maintenance (RCM). Maintenance systems: Components, structure, computer methods. Tribology: Friction laws, lubrication theory, contamination control.
Maintenance Practice: Systems approach, management approach, modelling.
Module content:
Basic nuclear physics: definitions and concepts (nuclear reaction, binding energy, cross-sections, moderator, reflector, etc.). Basic reactor physics: diffusion equation and boundary equations, group-diffusion methods, reactor kinetics. Reactor types: pressurised water reactors, boiling water reactors, gas-cooled reactors. Nuclear fuel cycle (including waste disposal). Reactor materials: fuels, moderators, coolants, reflectors, structures, systems or components. Reactor safety: biological effects of radiation, radiation shielding, principles of nuclear plant safety, atmospheric dispersion of radioactive contamination, event-tree and fault-tree analyses of reactor systems.
Module content:
Introduction to aerodynamics and aeronautics. Fundamental physical quantities of flowing gas. Equations of state. Anatomy of an airplane. Atmospheriology. Basic aerodynamics. Potential flow. Elementary compressible flow. The Kutta-Joukowski Theorem. Introduction to viscous flow. Laminar and Turbulent Boundary Layers. Skin friction. Transition Flow Separation. Airfoil nomenclature. Lift, drag and moment coefficients. Pressure coefficients. Airfoil data. Wing properties. Circulation, downwash, and induced drag. Span efficiency. Stall. High-lift devices. Drag. Elements of airplane and flight performance. Range, endurance and payload. Principles of static stability and control.
Module content:
Introduction to elements of computer-aided design. Formulation of the optimum design problem. Concepts used in optimum design. Linear and integer programming methods. Numerical methods used for unconstrained and constrained optimum design. Model reduction techniques. Application to interactive and practical design optimisation.
Module content:
This module contains a comprehensive study of all mechanical systems and processes of a fossil fuel power station. Analysis of steam cycles, combined cycle power generation, fuels and combustion, the draught group, steam generators and turbines, condenser, feedwater and circulating water systems, coal and ash handling, compressor plant, water treatment, the importance of HVAC, control and instrumentation, control philosophies and environmental considerations.
Module content:
Tyres: Construction, forces and moments, side force generation, rolling resistance, dynamic characteristics, tractive effort, slip, soft soil characteristics. Vehicle performance: equations of motion, supply and demand, forces acting on the vehicle, prediction of top speed, acceleration, braking, gradient ability and fuel consumption. Vehicle suspension systems: suspension concepts, kinematics, dynamic characteristics. Ride comfort: springs, dampers, suspension models, human response to vibration. Handling: steering systems, low-speed handling, steady-state handling, dynamic handling, under/oversteer, handling tests.
Module content:
Solution of systems of linear algebraic equations. Both iterative and direct methods are treated. Solutions are applied to both small and large scale systems. Solutions of systems of nonlinear equations. Eigenvalue problems. Numerical approximation strategies. Numerical integration and differentiation. Numerical solutions to initial-value problems for ordinary differential equations, boundary-value problems for ordinary differential equations and partial-differential equations.
Copyright © University of Pretoria 2024. All rights reserved.
Get Social With Us
Download the UP Mobile App