Astronomers capture first image of a black hole

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Today (10 April), in coordinated press conferences across the globe, EHT researchers reveal that they have succeeded, unveiling the first direct visual evidence of a supermassive black hole and its shadow. 

This breakthrough was announced today in a series of six papers published in a special issue of The Astrophysical Journal Letters. The image reveals the black hole at the centre of Messier 87 [1], a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5-billion times that of the Sun [2].

The EHT links telescopes around the globe to form an Earth-sized virtual telescope with unprecedented sensitivity and resolution [3]. The EHT is the result of years of international collaboration, and offers scientists a new way to study the most extreme objects in the Universe predicted by Einstein’s general relativity during the centennial year of the historic experiment that first confirmed the theory [4].

"We are giving humanity its first view of a black hole — a one-way door out of our Universe," said EHT project director Sheperd S. Doeleman of the Center for Astrophysics, Harvard & Smithsonian. "This is a landmark in astronomy, an unprecedented scientific feat accomplished by a team of more than 200 researchers." 

Black holes are extraordinary cosmic objects with enormous masses but extremely compact sizes.  The presence of these objects affects their environment in extreme ways, warping spacetime and super-heating any surrounding material. 

"If immersed in a bright region, like a disc of glowing gas, we expect a black hole to create a dark region similar to a shadow — something predicted by Einstein’s general relativity that we’ve never seen before," explained chair of the EHT Science Council Heino Falcke of Radboud University, the Netherlands. "This shadow, caused by the gravitational bending and capture of light by the event horizon, reveals a lot about the nature of these fascinating objects and allowed us to measure the enormous mass of M87’s black hole." 

Multiple calibration and imaging methods have revealed a ring-like structure with a dark central region — the black hole’s shadow — that persisted over multiple independent EHT observations.

"Once we were sure we had imaged the shadow, we could compare our observations to extensive computer models that include the physics of warped space, superheated matter and strong magnetic fields. Many of the features of the observed image match our theoretical understanding surprisingly well," remarks Paul T.P. Ho, EHT Board member and Director of the East Asian Observatory  [5]. "This makes us confident about the interpretation of our observations, including our estimation of the black hole’s mass."

Creating the EHT was a formidable challenge which required upgrading and connecting a worldwide network of eight pre-existing telescopes deployed at a variety of challenging high-altitude sites. These locations included volcanoes in Hawai`i and Mexico, mountains in Arizona and the Spanish Sierra Nevada, the Chilean Atacama Desert, and Antarctica.

The EHT observations use a technique called very-long-baseline interferometry (VLBI) which synchronises telescope facilities around the world and exploits the rotation of our planet to form one huge, Earth-size telescope observing at a wavelength of 1.3mm. VLBI allows the EHT to achieve an angular resolution of 20 micro-arcseconds — enough to read a newspaper in New York from a sidewalk café in Paris [6].

The telescopes contributing to this result were ALMAAPEX, the IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope Alfonso Serrano, the Submillimeter Array, the Submillimeter Telescope, and the South Pole Telescope [7]. Petabytes of raw data from the telescopes were combined by highly specialised supercomputers hosted by the Max Planck Institute for Radio Astronomy and MIT Haystack Observatory.

The construction of the EHT and the observations announced today represent the culmination of decades of observational, technical, and theoretical work. This example of global teamwork required close collaboration by researchers from around the world. Thirteen partner institutions worked together to create the EHT, using both pre-existing infrastructure and support from a variety of agencies. Key funding was provided by the US National Science Foundation (NSF), the EU's European Research Council (ERC), and funding agencies in East Asia.

University of Pretoria astrophysicist Prof Roger Deane’s research group’s role was to create a highly realistic simulation of this complex Earth-sized instrument, understand its limits, and test algorithms that recover the black hole shadow. “This sophisticated software is also being used to demonstrate how the EHT will be dramatically enhanced if expanded onto the African continent. Our role shows that the University of Pretoria is a global player, forming part of an exceptionally talented and ambitious team of international astronomers to produce this historic result.” Prof Deane added that the new UP Astronomy Group aims to make leading contributions with MeerKAT science programmes, and further ahead with the Square Kilometre Array.

"We have achieved something presumed to be impossible just a generation ago," concluded Doeleman. "Breakthroughs in technology and the completion of new radio telescopes over the past decade enabled our team to assemble this new instrument — designed to see the unseeable."

Notes

[1] The shadow of a black hole is the closest we can come to an image of the black hole itself, a completely dark object from which light cannot escape. The black hole’s boundary — the event horizon from which the EHT takes its name — is around 2.5 times smaller than the shadow it casts and measures just under 40 billion km across.

[2] Supermassive black holes are relatively tiny astronomical objects — which has made them impossible to directly observe until now. As a black hole’s size is proportional to its mass, the more massive a black hole, the larger the shadow. Thanks to its enormous mass and relative proximity, M87’s black hole was predicted to be one of the largest viewable from Earth — making it a perfect target for the EHT.

[3] Although the telescopes are not physically connected, they are able to synchronize their recorded data with atomic clocks — hydrogen masers — which precisely time their observations. These observations were collected at a wavelength of 1.3 mm during a 2017 global campaign. Each telescope of the EHT produced enormous amounts of data – roughly 350 terabytes per day – which was stored on high-performance helium-filled hard drives. These data were flown to highly specialised supercomputers — known as correlators — at the Max Planck Institute for Radio Astronomy and MIT Haystack Observatory to be combined. They were then painstakingly converted into an image using novel computational tools developed by the collaboration.

[4] 100 years ago, two expeditions set out for the island of Príncipe off the coast of Africa and Sobra in Brazil to observe the 1919 solar eclipse, with the goal of testing general relativity by seeing if starlight would be bent around the limb of the sun, as predicted by Einstein. In an echo of those observations, the EHT has sent team members to some of the world's highest and isolated radio facilities to once again test our understanding of gravity.

[5] The East Asian Observatory (EAO) partner on the EHT project represents the participation of many regions in Asia, including China, Japan, Korea, Taiwan, Vietnam, Thailand, Malaysia, India and Indonesia.

[6] Future EHT observations will see substantially increased sensitivity with the participation of the IRAM NOEMA Observatory, the Greenland Telescope and the Kitt Peak Telescope.

[7] ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), the U.S. National Science Foundation (NSF), and the National Institutes of Natural Sciences(NINS) of Japan, together with the National Research Council (Canada), the Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. APEX is operated by ESO, the 30-meter telescope is operated by IRAM (the IRAM Partner Organizations are MPG (Germany), CNRS (France) and IGN (Spain)), the James Clerk Maxwell Telescope is operated by the EAO, the Large Millimeter Telescope Alfonso Serrano is operated by INAOE and UMass, the Submillimeter Array is operated by SAO and ASIAA and the Submillimeter Telescope is operated by the Arizona Radio Observatory (ARO). The South Pole Telescope is operated by the University of Chicago with specialized EHT instrumentation provided by the University of Arizona.

More Information

This research was presented in a series of six papers published today in a special issue of Astrophysical Journal Letters: Paper IPaper IIPaper IIIPaper IVPaper V, and Paper VI

The EHT collaboration involves more than 200 researchers from Africa, Asia, Europe, North and South America. The international collaboration is working to capture the most detailed black hole images ever by creating a virtual Earth-sized telescope. Supported by considerable international investment, the EHT links existing telescopes using novel systems — creating a fundamentally new instrument with the highest angular resolving power that has yet been achieved.

The individual telescopes involved are; ALMA, APEX, the IRAM 30-meter Telescope, the IRAM NOEMA Observatory, the James Clerk Maxwell Telescope (JCMT), the Large Millimeter Telescope Alfonso Serrano (LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT), the South Pole Telescope (SPT), the Kitt Peak Telescope, and the Greenland Telescope (GLT). 

The EHT collaboration consists of 13 stakeholder institutes; the Academia Sinica Institute of Astronomy and Astrophysics, the University of Arizona, the University of Chicago, the East Asian Observatory, Goethe-Universitaet Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max Planck Institute for Radio Astronomy, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University and the Smithsonian Astrophysical Observatory.

Prof Roger Deane Image Credits: EHT Collaboration/ESO

April 10, 2019

  • Estimated Reading Time: 7 minutes

Researchers
  • Professor Roger Deane
    University of Pretoria (UP) astrophysicist Professor Roger Deane was part of the international group of scientists who have captured the first image of a black hole. His group worked to develop simulations of the complex, Earth-sized telescope used to make this historic discovery. These simulations attempt to mimic and better understand the data coming from the real instrument, which is made up of antennas across the globe.

    About four years ago, Prof Deane started working with the team on the Event Horizon Telescope (EHT), which captured the image that was globally released today (Please see up.ac.za for the official media release). Prof Deane, who grew up in Welkom in the Free State, developed a passion for astronomy from an early age, when he was dazzled by the excellent view of the Milky Way.

    Downplaying his contribution to the capturing of the first image of a black hole, the 36-year-old Associate Professor of Physics said, “I’m still blown away by the image. It hasn’t really worn off yet. I’m just proud and honoured to play my small part in this amazing international team.”
    UP Vice-Chancellor and Principal Prof Tawana Kupe congratulated Prof Deane on his contribution to the EHT. "This young scientist is an inspiration to scientists on the African continent. Our staff and students are innovative and creative thinkers who excel in cutting-edge research, and this discovery is a great example of what can be achieved if we work together across borders and disciplines. UP is already at the forefront of world-class research and, as one of the largest knowledge producers in South Africa, we make an impact on issues of critical relevance to Africa and the world. We produce high-quality research that matters,” he said.

    According to Prof Deane, as with any major physics experiment, one needs to understand the effects that the instrument itself may have on the data. “In the case of the EHT, we built a simulation package that physically modelled a number of non-desirable effects that prevent one from seeing any sort of black hole shadow feature.”

    The EHT observes what radio astronomers consider to be a very short wavelength, about 1 mm, which means the distance between two consecutive peaks of light is 1 mm. “This is about 200 times smaller than the wavelength of light that MeerKAT observes, and presents many challenges to the telescope design, data processing and analysis.”

    Prof Deane said, “Just a small amount of water vapour in the atmosphere could completely erase the signature of the black hole shadow. This is why the EHT stations are at very high altitudes in some of the driest places on Earth.” There are a multitude of other aspects to accurately model in an instrument as sensitive and complex as this telescope. “We incorporate as much of this information as we can physically model in software. This accurate simulation of the telescope enables astronomers to better understand the real observations, discriminate between theoretical black hole shadow models, and insights into the characteristics and performance of the telescope itself.” He explained that this also allows scientists to accurately predict the impact of adding new antennas in the global network, as is planned for the African Millimetre Telescope (AMT) project in Namibia.

    The first image of a black hole is a significant milestone for the EHT, but much lies ahead as the team works towards testing Einstein’s general theory of relativity. To do so, they will need to continue to improve the images through array expansion in Africa and elsewhere with improved algorithms. Prof Deane says his group is now focused on three things: “Expanding our simulations to model the case where light from the black hole may have preferred orientation – think about how polarised lenses reduce the sun’s glare from the sea – performing detailed simulations on new prospective sites, and exploring a range of probabilistic modelling techniques to extract the properties of the black hole shadow.”

    What did it feel like being part of a team of 200 highly talented scientists who have worked on this project?

    “It has been a privilege – I have learned a great deal in all spheres. One of the aspects of my job that I love the most is working with astronomers from around the world from a diverse set of backgrounds and perspectives. The dramatic result unveiled today has required a combination of the world’s best engineers, theorists, and observers. I’m thrilled to be a part of that team. It has also been challenging, apart from practical aspects like the geographic and time zone differences.”

    At UP, this Y1 National Research Foundation-rated scientist is leading the new Astronomy Research Group which is focused on MeerKAT, the Square Kilometre Array, and the technique of creating virtual Earth-sized telescopes like the EHT and the African Very Long Baseline Interferometry Network.

    When he moved to UP in January 2018, there were no other astronomers at the institution. “By July, we should have scaled up to approximately 14. We are hoping to finalise a joint South African Radio Astronomy Observatory-UP South African Research Chair Initiative Chair in radio astronomy by then as well. Over 100 UP students registered for the first year astronomy course in 2019, a dramatic increase, so there is clearly a need to grow the number of faculty positions in astronomy to deal with the teaching and postgraduate student supervision demand.”

    The UP Astronomy group’s science-driven approach is in keeping with the realisation that this new era of complex, big-data telescopes requires technical expertise and new algorithmic approaches. A significant part of his UP research group’s work is focused on machine learning with the UP Computational Intelligence Research Group in the Department of Computer Science, and instrumental work in collaboration with UP’s Electrical, Electronic and Computer Engineering Department.

    Looking ahead, Prof Deane is very excited about growth in astronomy, saying that, “South Africa has an increasing number of astronomy-related success stories to help spur our youth into science and technology careers. I think our government, through the Department of Science and Technology, has been very strategic in that regard, with payoffs that will be far-reaching and long-lasting.”

    Professor Roger Deane on the University of Pretoria’s astronomy programme

    When did UP’s astronomy programme start?

    UP’s Department of Physics has had astronomy undergraduate courses for many years. The current radio astronomy research group started at the beginning of 2018 with my arrival. UP has among the largest astronomy enrollments in undergraduate courses in South Africa, showing great potential to grow into a large research group.

    Approximately how many students do you have?

    In July this year, we should have scaled up to approximately 13 (1 faculty, 2 post-docs, 1 PhD, 3 MSc, 6 Hons). We are hoping to finalise a joint South African Radio Astronomy Observatory-UP SARChI Chair in radio astronomy by then as well, which should increase the cohort to at least 20.

    Why is big data important, and what is the computational capacity of the MeerKAT and the Event Horizon Telescope (EHT)?

    The EHT raw data was 4 petabytes in size. Unlike EHT, which observes one astrophysical object a time, MeerKAT will detect many millions and have archive sizes even larger than an annual EHT campaign. To analyse this data and ensure we enable all the exciting discoveries to come, we have to get in step with the fourth industrial revolution (4IR) and employ artificial intelligence and machine learning approaches. Astronomy is a key contributor to the 4IR, as highlighted by President Cyril Ramaphosa in this year's State of the Nation address. At UP, the Astronomy and Computational Intelligence Research Groups are working closely together to ensure our university plays a leading role in this en route to the Square Kilometre Array. The UP Astronomy group’s science-driven approach is coupled with the realisation that this new era of complex, big-data telescopes requires technical expertise and new algorithmic approaches. A significant part of the UP research group’s work is focused on machine learning with the UP Computational Intelligence Research Group in the Department of Computer Science, and instrumental work in collaboration with UP’s Electrical, Electronic and Computer Engineering Department.

    How is UP leading in investing and promoting astronomy as an academic and research discipline?

    UP has taken a forward-thinking, strategic approach by investing in the Inter-University Institute for Data Intensive Astronomy (IDIA). It is one of three university partners who are ensuring they will be able to deal with the data processing and analysis demands of MeerKAT and SKA. UP has also taken a strategic decision to invest in the technique of Very Long Baseline Interferometry – the very same approach the EHT uses. This is with a view to taking a leadership role in the African VLBI Network and the second phase of the Square Kilometre Array, ensuring South Africa and Africa are at the forefront of the spectacular science these VLBI arrays will perform.

    How does UP’s astronomy programme – and South African astronomy in general – measure up in the global astronomy community?

    In the UP Department of Physics, we are building a new astronomy group that is both science-driven and technically savvy. We have demonstrated that in the EHT project, and we are heavily focused on making leading contributions towards MeerKAT, which will eventually extend across the African continent as the SKA. It's important that South Africa benefit scientifically from the astronomy investments that the South African government has made through the Department of Science and Technology. To do so, universities need to play their part in investing in research expertise. UP is in the process of stepping up to that responsibility, with this EHT announcement being a first example of the fruits of that investment.
    More from this Researcher

Related Video

Related Gallery

Other Related Research

Copyright © University of Pretoria 2024. All rights reserved.

Share