What does the discovery of underground hydrogen in Mpumalanga mean?

Hydrogen is considered a fuel of the future due to it emitting zero emissions. This infographic explains the impact of this discovery as well as some interesting facts about hydrogen and the different forms of it.

November 29, 2023

Researchers
  • Professor Adam Bumby

Professor Adam Bumby completed his undergraduate and honours degrees at the University of St Andrews in Scotland. His MSc and PhD were completed at the University of Pretoria (UP). He has been at the University for almost 28 years – as a member of staff for the past 20 years – and have been in involved in continuous research throughout that time.

His research, he says, is multidisciplinary. “We are dealing with early-stage identification of the presence and source of hydrogen.”

Prof Bumby adds that the research team at UP is leading local investigations that are part of an international consortium of European Union and African Union countries.

“Other parts of this research involving UP staff are considering the social, economic and political aspects within the country implicated by the presence of hydrogen.”

The geology aspect of the research falls within Faculty of Natural and Agricultural Sciences. The more social, economic and political aspects are being handled by Emeritus Professor David Walwyn of the Graduate School of Technology Management in the Faculty of Engineering, the Built Environment and Information Technology.

The project began in September 2022 and is a milestone in the research agenda of those involved.

“We began collecting field data in Mpumalanga in June 2023,” Prof Bumby explains. “A notable highlight was finding an area near Hendrina where we recorded natural hydrogen in the soil beyond the detection limits of our hydrogen meter (10 000 ppm). The ‘normal’ background reading of hydrogen in soils and the atmosphere is 0.5 ppm. Clearly, this implies a significant increase in hydrogen from the rocks below that area.”

The research consortium was the brainchild of Prof Julio Carneiro of the University of Evora in Portugal who also leads the research. He has been instrumental in establishing UP’s interest in this topic. Prof Carneiro has an extensive background in hydrogeology, carbon sequestration and geo-energy.

While Prof Bumby admires Prof Carneiro’s inspired idea in putting together the hydrogen research project, his academic role model is his MSc and PhD supervisor – Emeritus Professor Patrick Eriksson who had a long career at UP and excelled in teaching and research.

“He had an amazing ability to pull information from a wide range of sources to form cohesive, holistic theories of how the early Earth might have developed,” Prof Bumby says.

Considering the scale of this project, his hope is to identify areas where significant amounts of hydrogen are being stored below the surface in rocks.

“Going forward, it would be great if these reserves could be exploited by drilling shallow boreholes and low-cost mini power stations installed to burn the hydrogen,” Prof Bumby says.

This research matters because if sufficient hydrogen stored in layers of strata can be found and exploited, this could contribute to national energy reserves, at least within a local/small-scale setting.

“Natural hydrogen is considered to be renewable in that it is constantly produced in certain geological environments below Earth’s surface, and produces few pollutants when it burns,” he explains. “If natural hydrogen reaches the surface in sufficient concentrations, it can be collected; it burns explosively, so it can be used to power generators or used in hydrogen fuel cells. The only emission from fuel cells is water vapour. Therefore, it has the potential to be a source of cheap, non-polluting energy for small-scale electricity production and so contribute to the betterment of the world.”

His advice to school learners or undergraduates who are interested in his field is that geology is not just about rocks – it is about energy, the environment and solving some of the world’s pressing problems, including energy and pollution.

As for his hobbies, Prof Bumby says he enjoys spending time mountaineering, and restoring vintage cars and motorbikes. “Though,” he adds “I now have a young family, and that takes up all of my spare time!”

More from this Researcher
  • Dr Ansie Smit

Dr Ansie Smit completed her undergraduate and postgraduate studies at the University of Pretoria (UP). She has been involved in research at UP since 2009. Initially, she was primarily involved in the UP Natural Hazard Centre and is now a senior lecturer in the Department of Geology.

She says she is doing research at UP because it is one of the leading research universities in South Africa and has a strong focus on sustainability and real-world impact.

Her research focuses on developing statistical solutions for applied problems, especially in earth sciences. Current research projects include the spatial and spatio-temporal modelling of earth processes. This research improves our understanding of these processes and natural disasters, and how we can use this knowledge to better society.

Dr Smit is part of three research teams. The first is a collaboration between various UP departments focusing on the development of hail hazard maps for South Africa. These maps can aid agricultural and insurance industries in planning and developing financial instruments in instances of extreme hail events.

The second team, StatSNetSA, looks at peer development and support of doctoral supervisors in South Africa. This follows from a shortage of statisticians in academia and the exceptionally strong pull from industry. A guiding rubric for doctoral supervision applicable to all South African universities has been developed and is in the process of being published.

“We hold regular workshops with early-career, mid-career and late-stage academics in South Africa with a strong focus on peer support and capacity building,” Dr Smit says. “A new focus is also on the role that large language models (such as ChatGPT) can play in doctoral supervision.”

As part of a new research project, she is concentrating on statistical and geostatistical modelling to track the occurrence of natural hydrogen in Mpumalanga. The research forms part of a larger multidisciplinary project that is focused on early-stage identification of the presence and source of natural hydrogen and determining the geological controls on its occurrence. The project aims to find natural hydrogen sources in Africa (South Africa, Mozambique, Morocco and Togo) that could lead to new, easily accessible, clean and renewable energy sources. UP is a leading South African partner, as is the University of Limpopo, in an international consortium of European Union (EU) and African Union (AU) countries. The project is being funded by LEAP-RE (Long-term Joint EU-AU Research and Innovation Partnership on Renewable Energy).

The investigation of the potential geological controls for natural hydrogen involves various faculties and includes several working groups. The research ranges from identifying and understanding these geological controls to research on local energy systems, and the economics of standalone and off-grid systems in remote or small communities. The aim is to provide policy and regulatory analysis and guidelines for the implementation of regional/national roadmaps for a consistent strategy for natural hydrogen exploitation. Emeritus Professor David Walwyn of the Graduate School of Technology Management in the Faculty of Engineering, Built Environment and Information Technology leads UP’s involvement in this aspect of the project.

The natural hydrogen project started in September 2022, and currently field data is being collected in the Hendrina area in Mpumalanga. A notable highlight was the recording of natural hydrogen in the soil beyond the detection limits of the hydrogen meter (10 000 ppm), which is significantly higher than the expected background reading of hydrogen in soils and the atmosphere of 0.5 ppm. This and other high measurements imply a significant presence of hydrogen in that area.

Dr Smit enjoys participating in cross-disciplinary research projects that have real-world implications. Statistical modelling combined with geological and physical analyses of natural Earth processes opens up new and exciting research avenues, and can contribute to South Africa’s national goals and the Sustainability Development Goals.

She encourages school learners or undergraduates who are interested in her field to always keep an open mind to see where these types of opportunities present themselves.

“It allows you to connect to other research fields that you may find interesting with your main specialisation to solve complex problems of our time,” she says.

More from this Researcher
  • Professor David Walwyn

Professor Walwyn completed his undergraduate studies at the University of Cape Town and has been doing research at the University of Pretoria (UP) for the past 12 years.

He says UP affords him the ideal environment in which to undertake his research.

“I have access to all the library resources, a cohort of students to assist with the work, colleagues with whom I can interact and collaborate, a well-managed infrastructure to support my applications for funding, and all the common research administration functions.”

Prof Walwyn is a transdisciplinary scholar who is focused on two important research areas: localisation of manufacturing in the health and energy sectors, and transformation of socio-technical systems, especially systems for mobility and electricity. For this work, he uses a combination of techno-economics, policy mix theory and transitions theory to identify turning points for localisation and transformation.

The focus of his research is reaching four important Sustainable Development Goals (SDGs): SDG 7 (Affordable, Reliable, Sustainable and Modern Energy for all), SDG 11 (Sustainable Cities and Communities), SDG 13 (Women, Youth and Local and Marginalised Communities) and SDG 4 (Quality Education). In essence, the attainment of a net-zero global economy is both an imperative and a massive challenge.

“Through my research, I hope to make a small contribution to this broader goal,” he says. “The big issue in this work is the ‘theory of change’. My perspective of the latter is that change will only happen when we can effectively confront and challenge the legacy and pathway dependencies of the present socio-technical regimes.”

Prof Walwyn says he research “is rather just small contributions to the national discourse on energy systems and how these can be transformed”. However, he adds, his research matters because we have no choice but “to make the energy transition”.

Within his academic discipline, he is part of two research teams, one of which is working on white hydrogen and the other on the development of hardware/software for vehicle-to-grid systems.

He says his research has been inspired by the work of Prof Mark Swilling and Prof Johan Schot. Prof Swilling is the co-director of the Centre for Sustainability Transitions at Stellenbosch University, and writes about sustainability and the importance of Ukama or kincentric ecology. Prof Schot is professor of global comparative history and sustainability transitions at the Centre for Global Challenges at Utrecht University in the Netherlands, and writes about deep transition and changing societal meta-values.

Prof Walwyn adds that he admires all the major contributors to his field, including people such as Bengt-Ake Lundvall, an emeritus professor of economics at Aalborg University in Denmark, and Frank Geels, a professor of system innovation and sustainability at the University of Manchester in the UK.

Prof Walwyn dreams of a rapidly growing renewable energy sector that will reduce South Africa’s carbon footprint, empower local communities and create green jobs.

He urges school learners or undergraduates who are interested in his field to read, study and understand. Knowledge and critical analysis are essential in the 21st century.

“The world needs you – you just need to discover for yourself how one can transform agency and capability into action. Follow your passion, but remain evidence-based.”

As far as hobbies go, Prof Walwyn says he has many diverse interests. 

“I play the flute. I do trail runs, road runs, mountain bike races and road bike events. I hike, walk, swim and surf. And I knit, mainly socks, leg warmers and beanies. If you are ever in need, just ask me!”

Prof Walwyn’s research focus areas

A sustainability transition is defined as “the long-term, multi-dimensional and fundamental transformation processes through which established socio-technical systems shift to more sustainable modes of production and consumption”. Examples of such transitions include changes from non-renewable (such as coal and gas) to renewable (such as wind and solar) sources of electrical energy, from internal combustion engines to fuel cell electric vehicles and the adoption of green building practices. 

These transitions are essential if the international agreements on climate change, such as COP21, are to be met, simultaneous to the elimination of poverty and inequality (SDGs 1 and 10). Although techno-economics is only one of several drivers of such transitions, it is a sine qua non in developing countries.  Prof  Walwyn’s work has looked at how changes in the techno-economics of energy systems are supporting or preventing energy transitions.

In the area of health sector localisation, he works on vaccine and pharmaceutical manufacturing. The work is particularly important in the context of the recent COVID-19 pandemic. His initiative in 2002 to maintain local technological capability in the vaccine value chain is now being recognised.          

In all this work, he has attempted to understand the reasons why science, technology and innovation do, or do not, lead to economic development, and has used a number of theoretical frameworks in his research, including technological innovation systems, innovation policy mix, niche experimentation, technological capability, historical institutionalism, sustainability transitions and neo-classical economics. 

More from this Researcher

Related Story

Related Gallery

Other Related Research

  • Story

    UP researchers find environmental toxins poison epigenetic inheritance

    In a study that signals potential reproductive and health complications in humans, now and for future generations, researchers at the University of Pretoria and Canada’s McGill University and Université Laval have concluded that toxins in the environment, notably DDT, modify the sperm epigenome at sites potentially transmitted to the embryo at conception.

  • Story

    RE.SEARCH 7: Just Transitions

    This edition explores the theme of ‘Just Transitions’ which is generally characterised by ideas of sustainability and the greening of the economy, and supported by the ideas of resistance, rethinking and restructuring society for a better and more equitable future. As one of the most impactful producers of research in South Africa, UP has several specialised research teams that are on the...

  • Story

    Research shows there are more warm-bodied sharks than previously thought

    New research arising from a collaboration between scientists at the University of Pretoria (UP) and Trinity College Dublin has shown there are likely more warm-bodied sharks out there than previously thought.

Copyright © University of Pretoria 2024. All rights reserved.

Share