Yearbooks

Program: BEngHons Transportation Engineering

Code Faculty Duration Credits Download
12240112 Faculty of Engineering, Built Environment and Information Technology Minimum duration of study: 1 jaar Totale krediete: 128

Programinligting

The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.

The degree is awarded on the basis of examinations only.

Admission requirements

Subject to the stipulations of Reg. G.1.3 and G.54, a BEng degree or equivalent qualification is required for admission.

 

 

Examinations and pass requirements

  1. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June).
  2. A student registered for the honours degree must complete his or her studies within two years (full-time), or within three years (part-time) after first registration for the degree: Provided that the Dean, on recommendation of the relevant head of department, may approve a stipulated limited extension of this period.
  3. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once.
  4. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required.
  5. No supplementary or special examinations are granted at postgraduate level.

Pass with distinction

A student passes with distinction if he or she obtains a weighted average of at least 75% in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously).

Minimum krediete: 128

SSC 780 compulsory module / verpligte module

Core modules

  • Module-inhoud:

    A research term paper will be prepared.

    The course will apply some of the basics theories and methodologies in statistics and operations research to solve common civil engineering problems. The course seeks to demonstrate the use and application in the civil engineering field. Each of the applications seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources.  Emphasis will be on the applications of these methods in common civil engineering practice. Some of the applications will include; optimum network design, maximum flow problem, project scheduling, queuing theory, probabilistic analysis, Markov chain applications, etc.

    Sien meer

  • Module-inhoud:

    *This is a compulsory module.

    The course will require all honours students to conduct research in an appropriate field of civil engineering, linked to the main discipline in which the student specializes for their honours degree.

    Sien meer

Elective modules

  • Module-inhoud:

    A research term paper will be prepared.

    Design philosophy in First and Third World environments; characterising and use of pavement materials; drainage; systems approach to layout, geometric and pavement design; stresses and strains in pavements; mechanistic design methods and elasto-plastic behaviour; economic analysis; designing pavements for streets, gravel and paved roads, runways, and industrial areas. Report writing.

    Sien meer

  • Module-inhoud:

    A research term paper will be prepared.

    Properties of concrete and concrete mixes. Characteristics of Portland cement and supplementary cementitious materials. Aggregates, admixtures and practical design of mixes. Manufacture, curing and testing, including non-destructive methods. Statistical approach to quality control. Time-dependent behaviour and durability of concrete. The principles for appropriate selection of materials and techniques for repair, maintenance and strengthening of civil engineering structures. Investigation and diagnosis. Corrosion of reinforcement. Alkali-aggregate reaction, sulphate attack. Physical degradation. Repair materials. Protective systems. Systems for repair.

    Sien meer

  • Module-inhoud:

    A research term paper will be prepared.

    Development of road management systems and application to existing street and road networks. Evaluation of, and measurements on existing facilities. Maintenance management. Recycling of materials. Design methods for upgrading, re-construction and strengthening of the existing road infrastructure. Prerequisite: Pavement Design SGC 793.

    Sien meer

  • Module-inhoud:

    In the first part of this course, numerical procedures and some underlying theory for solving systems of equations, eigenvalue problems, integration, approximation and boundary value problems will be discussed. The second part of the course covers general finite element theory, discretization aspects related to geometry, nodes and numbering, element type and shape, interpolation functions, formulation of element characteristic matrices and vectors for elasticity problems, assembly and solution of the finite element equations, modelling procedures and results processing. The student will use Finite Element software to apply the theory that was covered in the course for solving typical Civil Engineering problems.

    Sien meer

  • Module-inhoud:

    A research term paper will be prepared.

    This module will cover the following topics: Asset Management principles, Maintenance Management principles, Maintenance strategies and philosophies, Condition based Maintenance, Reliability Centred Maintenance (RCM), Resource Management, Maintenance Management Systems, Total Productive Maintenance (TPM) and Risk Management. Maintenance management of the following disciplines will be studied in detail: Road infrastructure, Railway infrastructure, Airport infrastructure, Buildings and other structures, Water resources and water supply.

    Sien meer

  • Module-inhoud:

    A research term paper will be prepared.

    The role of public transport in cities; theory and principles of public transport network design, scheduling and operations; terminals; public transport modes; costs, fares and subsidies; contemporary issues and approaches to public transport restructuring and formalisation in South Africa, including Bus Rapid Transit (BRT). Planning and designing for non-motorised transport, including pedestrians, bicyclists, and animal-drawn transport.

    Sien meer

  • Module-inhoud:

    A research term paper will be prepared.

    Rural/Peri-urban road networks: transportation policy, standards and safety, environmental quality, capacity, design, interchanges. Urban street networks: functional classes, town planning considerations, capacities, environment, safety, standards design, evaluation of road networks.
    Traffic safety in global and national content, Road Safety Engineering and the assessment and interpretation of accident information, reactive and proactive identification of remedial measures, traffic safety strategies: 3E model and Haddon matrix.

    Sien meer


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of each student to familiarise himself or herself well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2019. All rights reserved.

FAQ's Email Us Virtual Campus Share