Yearbooks

Program: BScHons Applied Science Industrial Systems

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
12243002 Faculty of Engineering, Built Environment and Information Technology
Credits Duration
Minimum duration of study: 1 jaar Totale krediete: 128

Programinligting

The BScHons (Applied Science) degree is conferred by the following academic departments:

  • Chemical Engineering
  • Civil Engineering
  • Industrial and Systems Engineering
  • Materials Science and Metallurgical Engineering
  • Mechanical and Aeronautical Engineering
  • Mining Engineering

Any specific module is offered on the condition that a minimum number of students are registered for the module, as determined by the relevant head of department and the Dean. Students must consult the relevant head of department in order to compile a meaningful programme, as well as on the syllabi of the modules. The relevant departmental postgraduate brochures must also be consulted.

Admission requirements

An appropriate bachelor's degree, a BTech degree or equivalent qualification.

 

Other programme-specific information

The modules CPB 410, CBI 410 and CSS 420 do not form part of the postgraduate block presentations. Individual arrangements have to be made with the relevant lecturer regarding attendance of lectures, study material, tests and assignments.

Minimum krediete: 128

Core modules

  • Module-inhoud:

    • Monte Carlo Simulation
    • Continuous Simulation
    • System Dynamics
    • Multi-objective Decision-making
    • Operations Research
    • Decision Analysis
    • Discrete Simulation

    Sien meer

  • Module-inhoud:

    Enterprise Engineering can be defined as the body of knowledge, principles, and practices to design an enterprise. Due to their complexity and the continuously changing environment, enterprises need new approaches, tools and techniques to deliver innovative products and services to new markets in competitive environments. This module offers an introduction to the engineering design process applied to the enterprise as a system, and present existing approaches for designing, aligning and governing the enterprise. Within the design paradigm, the module also offers research methods (e.g. design research and action research) that are relevant for doing research within the enterprise engineering discipline.


    The module covers:
    •Background on systems thinking
    •Systems design and systems engineering
    •Prominent approaches for creating an enterprise engineering capability (e.g. Zachman, The Open Group, Dietz/Hoogervorst).
    •Mechanisms and practices associated with different phases of enterprise design (e.g. enterprise modelling, languages, road maps, maturity assessment etc.)
    •Research methods and techniques to validate and extend the EE knowledge base
    •Case studies
    •Change management

    Sien meer

  • Module-inhoud:

    *This is a compulsory research module.

    The module affords an individual student the opportunity of studying a designated area of coherent advanced knowledge under the tutorship of a senior staff member of the Department of Industrial and Systems Engineering. Eligibility, topic and scope of the intended project must be determined in consultation with the proposed supervisor.

    Sien meer

  • Module-inhoud:

    The design of an experiment may be defined as ‘the logical construction of an experiment in which the degree of uncertainty with which the inferences are drawn may be well defined’. The module deals with the following:

    • Principles of experimental design (Randomisation, Replication and Blocking (local control)
    • One-Factor-Two-level Factorial Designs
    • One-Factor-Multi-level Factorial Designs
    • Completely Randomised Design (CRD) and introduction to ANOVA
    • Randomised Complete Block Design (RBD)
    • Latin Square Design (LSD)
    • Balanced Incomplete Block Design (BIBD)
    • Factorial Experiments (2nd and 3rd factorial experiments)
    • Blocking and Confounding in Factorial designs
    • Overview of Factorial Designs

    Sien meer

  • Module-inhoud:

    A key objective of supply chain management is to develop competiveness and achieve a market advantage through the implementation of cross-functional processes as the mechanism to coordinate internal and external activities.
    The course aims to create an understanding of the importance of integrating key supply chain business processes and to develop the ability to analyse and implement such processes across functional and corporate silos. Standardised process definitions and practices, including strategic and operational sub-processes and key performance measurements, are considered.
    Course outline:
    • Customer Relationship Management Process
    • Supplier Relationship Management Process
    • Customer Service Management Process
    • Demand Management Process
    • Order fulfilment Process
    • Manufacturing Flow Management (Planning and Control) Process
    • Product Development and Commercialisation Process
    • Returns Management Process
    • Assessment of Supply Chain Management (SCM) Processes
    • Implementing and Sustaining SCM Processes
    • Supply Chain Mapping Approaches
    • Supply Chain Performance Measurement

    Sien meer

  • Module-inhoud:

    Building on undergraduate modules in Operations Research, the module aims to extend the mathematical programming and optimisation capabilities by introducing uncertainty. Many decision makers are confronted with complex environments in which data is not known with certainty, or in which the decision constraints are uncertain. For cases where one knows the shape, or can assume that the uncertainty follows a known probabilistic distribution, stochastic programming can be used. In the module both chance-constrained programming and fixed recourse are introduced. Fuzzy optimisation is introduced for cases where the shape and/or distribution of the uncertainty are not known.The module also addresses the uncertainty when a decision maker is confronted with multiple, competing objectives.

    Sien meer

  • Module-inhoud:

    Review of MPC, Agile Manufacturing Processes, Models of MPC
    Section 1: Review of MPC Theories and Framework
    Section 2: Research Framework for Problems in Manufacturing Systems
    1. Mathematical Model based Problems and their techniques
    2. Estimation and Hypothesis based Problems and their techniques
    Section 3: Introduction to MPC Problems and sample Models
    1. Forecasting models
    2. Aggregate planning models
    3. Lot sizing and disaggregation models
    4. Finite Scheduling models
    5. Lean Manufacturing Models
    6. Basic Distribution and Replenishment Models
    7. Basic Supply Chain Structural Analysis and Performance Models
    Section 4: Agile Panning Problems and Techniques
    1. Multi-Level Master Scheduling Techniques
    2. Constraint Scheduling – (TOC theory, applications and optimisation)
    3. Lean Manufacturing Implementation (from Flow Lean to Process Kaizen )
    4. Introduction to CONWIP ideology
    5. Introduction to Demand Driven MRP

    Sien meer

  • Module-inhoud:

    To make students conversant with the concepts, tools and techniques of reliability engineering.
    Capita selecta from:
    • Introduction to Reliability Engineering
    • Reliability Mathematics
    • Probability Plotting
    • Reliability Prediction for Design
    • Reliability Testing
    • Reliability Growth
    • Maintainability
    • Reliability Management

    Sien meer

  • Module-inhoud:

    Strategic design of supply chain networks, inventory management and supply chain integration. Framework for strategic alliances and third party logistics. Analysis and application of alternative supply chain reference models as the basis for modelling, analysis and improvement.
    Course outline:
    • Supply Chain Network Design
    • Strategic Management of Inventory
    • Supply Chain Integration
    • Strategic Alliances
    • Coordinated Product and Supply Chain Design
    • Supply Chain Modelling (SCOR, VRM)

    Sien meer


Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences