Waves, thermodynamics and modern physics 255

Module code PHY 255
Qualification Undergraduate
Faculty Faculty of Natural and Agricultural Sciences
Module content

Vibrating systems and waves (14 lectures)
Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.
Modern physics (30 lectures)
Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.
Heat and thermodynamics (12 lectures)
Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.
Modelling and simulation (7 practical sessions)
Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.
Error Analysis (7 practical sessions)
Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.

Module credits 24.00
Service modules Faculty of Education
Prerequisites [PHY114 and PHY124] or [PHY171] or [PHY143 and PHY153 and PHY163] and [WTW211#] and [WTW218#]
Contact time 1 practical per week, 2 discussion classes per week, 4 lectures per week
Language of tuition Module is presented in English
Department Physics
Period of presentation Semester 1

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of each student to familiarise himself or herself well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2019. All rights reserved.

FAQ's Email Us Virtual Campus Share