Yearbooks

Programme: BEngHons Metallurgical Engineering - Welding Engineering

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty Department
12240064 Faculty of Engineering, Built Environment and Information Technology Department: Materials Science and Metallurgical Engineering
Credits Duration NQF level
Minimum duration of study: 1 year Total credits: 150 NQF level:  08

Programme information

The BScHons (Applied Science) degree is conferred by the following academic departments:

  • Chemical Engineering
  • Civil Engineering
  • Industrial and Systems Engineering
  • Materials Science and Metallurgical Engineering
  • Mechanical and Aeronautical Engineering
  • Mining Engineering

Any specific module is offered on the condition that a minimum number of students are registered for the module, as determined by the relevant head of department and the Dean. Students must consult the relevant head of department in order to compile a meaningful programme, as well as on the syllabi of the modules. The relevant departmental postgraduate brochures must also be consulted.

Admission requirements

  1. BEng degree awarded by the University of Pretoria or equivalent degree or relevant four-year bachelor’s degree in engineering that the Engineering Council of South Africa (ECSA) regards as acceptable for registration as a candidate engineer and for eventual registration as a professional engineer
  2. An entrance examination may be required
  3. Comprehensive intellectual CV

Examinations and pass requirements

Refer also to G18 and G26.

  1. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June).
  2. G18(1) applies with the understanding that under exceptional circumstances an extension of a maximum of three years may be approved: provided that the Dean, on reccommendation of the relevant head of department, may approve a stipulated limited extension of this period.
  3. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once.
  4. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required.
  5. No supplementary or special examinations are granted at postgraduate level.

Pass with distinction

A student passes with distinction if he or she obtains a weighted average of at least 75% (not rounded) in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously). The degree must be completed within the prescribed study period. 

Minimum credits: 150

Core modules

  • Module content:

    This module looks at quality assurance and control in welded fabrication and manufacture, and introduces various standards and codes of manufacture used in the welding industry. Measurement, control and recording in welding, the principle of fitness for purpose, as well as health and safety issues are addressed. Control of residual stresses and distortion during welding, non-destructive testing, repair welding, and the economics of welding are considered. This module also examines plant facilities, welding jigs and fixtures. Special emphasis is placed on the design and implementation of welding procedure specifications, procedure qualification records and quality control plans. A number of case studies are examined.

    View more

  • Module content:

    The refereed literature on a specific topic (normally related to subsequent research towards a master's degree) is studied and summarised in a written report.  The important skills are finding appropriate papers, reading and comprehending these, and using the information in the paper to construct your own view on the research topic.  There are no formal contact sessions.  The first part of this module involves definition of a research topic (to be approved by the head of the department), development of a literature survey and compilation of a detailed research proposal. The second part of the module involves generation, presentation and critical interpretation of a project plan/results, and compilation of a written report and an oral presentation. The written document must be submitted at the end of October, with an oral presentation of 20-30 minutes in the week following submission of the survey.

    View more

  • Module content:

    This module examines the basic physical metallurgy and heat treatment of various metals and alloys, and the application of various mechanical testing techniques, microstructural analysis and corrosion testing to characterise metals and alloys.  The structure and properties of welds in carbon steels, stainless steels, cast irons, copper and copper alloys, nickel and nickel alloys, aluminium and aluminium alloys and other materials (Ti, Mg, Ta and Zr) are discussed.  Defects are discussed and various techniques to avoid the formation of these defects in welds are considered.

    View more

  • Module content:

    This module examines arc physics, electrotechnics as applied to weld power sources, and power source design. The fundamental principles, applications, consumables and process variables of various arc welding processes, oxy-gas welding techniques, resistance welding processes, power beam processes and solid-state welding techniques are considered. Brazing and soldering, cutting, surfacing and metal spraying techniques are discussed. The module also looks at the welding of plastics, ceramics and composites, and at the mechanisation and use of robotics in the welding and joining industries. Practical training is included in this module.

    View more

  • Module content:

    This module examines welded joint design, the basics of weld design and the role of fracture mechanics in joint design. The behaviour of welded structures under different types of loading are considered, with special focus on the design of welded structures with predominantly static loading and the design of dynamically loaded welded structures. The design of welded pressure equipment, aluminium alloy structures and reinforcing-steel welded joints is considered.

    View more


The regulations and rules for the degrees published here are subject to change and may be amended after the publication of this information.

The General Academic Regulations (G Regulations) and General Student Rules apply to all faculties and registered students of the University, as well as all prospective students who have accepted an offer of a place at the University of Pretoria. On registering for a programme, the student bears the responsibility of ensuring that they familiarise themselves with the General Academic Regulations applicable to their registration, as well as the relevant faculty-specific and programme-specific regulations and information as stipulated in the relevant yearbook. Ignorance concerning these regulations will not be accepted as an excuse for any transgression, or basis for an exception to any of the aforementioned regulations.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences