University of Pretoria Yearbook 2021 # BEngHons Transportation Engineering (12240112) | Department | Civil Engineering | |---------------------------|-------------------| | Minimum duration of study | 1 year | | Total credits | 128 | | NQF level | 08 | # Programme information The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits. The degree is awarded on the basis of examinations only. # Admission requirements - 1. BEng degree awarded by the University of Pretoria **or** relevant four-year bachelor's degree in engineering that the Engineering Council of South Africa (ECSA) regards as acceptable for registration as a candidate engineer and for eventual registration as a professional engineer - 2. An entrance examination may be required - 3. Comprehensive intellectual CV # Examinations and pass requirements - i. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June). - ii. A student registered for the honours degree must complete his or her studies within two years (full-time), or within three years (part-time) after first registration for the degree: Provided that the Dean, on recommendation of the relevant head of department, may approve a stipulated limited extension of this period. - iii. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once. - iv. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required. - v. No supplementary or special examinations are granted at postgraduate level. # Pass with distinction A student passes with distinction if he or she obtains a weighted average of at least 75% in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not # Curriculum: Final year Minimum credits: 128 SSC 780 compulsory module / verpligte module #### **Core modules** # **Applied statistical methods and optimisation 798 (SHC 798)** | Module credits | 24.00 | |------------------------|--------------------------------| | NQF Level | 08 | | Prerequisites | No prerequisites. | | Contact time | 40 Contact hours | | Language of tuition | Module is presented in English | | Department | Civil Engineering | | Period of presentation | Year | #### **Module content** A research term paper will be prepared. The course will apply some of the basics theories and methodologies in statistics and operations research to solve common civil engineering problems. The course seeks to demonstrate the use and application in the civil engineering field. Each of the applications seeks to determine how best to design and operate a system, usually under conditions requiring the allocation of scarce resources. Emphasis will be on the applications of these methods in common civil engineering practice. Some of the applications will include; optimum network design, maximum flow problem, project scheduling, queuing theory, probabilistic analysis, Markov chain applications, etc. ### Civil research 780 (SSC 780) | Module credits | 32.00 | |------------------------|--------------------------------| | NQF Level | 08 | | Contact time | 8 contact hours per year | | Language of tuition | Module is presented in English | | Department | Civil Engineering | | Period of presentation | Year | #### **Module content** The course will require all honours students to conduct research in an appropriate field of civil engineering, linked to the main discipline in which the student specializes for their honours degree. # **Elective modules** ^{*}This is a compulsory module. ### Pavement design 793 (SGC 793) Module credits 24.00 NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering Period of presentation Year #### **Module content** A research term paper will be prepared. Design philosophy in First and Third World environments; characterising and use of pavement materials; drainage; systems approach to layout, geometric and pavement design; stresses and strains in pavements; mechanistic design methods and elasto-plastic behaviour; economic analysis; designing pavements for streets, gravel and paved roads, runways, and industrial areas. Report writing. ### Road rehabilitation technology 797 (SGC 797) | Module credits | 24.00 | |----------------|-------| |----------------|-------| NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### **Module content** A research term paper will be prepared. Development of road management systems and application to existing street and road networks. Evaluation of, and measurements on existing facilities. Maintenance management. Recycling of materials. Design methods for upgrading, re-construction and strengthening of the existing road infrastructure. Prerequisite: Pavement Design SGC 793. #### Numerical methods and finite element applications for Civil Engineers 790 (SIK 790) | Module | credits | 24.00 | |--------|---------|-------| |--------|---------|-------| NQF Level 08 **Contact time** 40 contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### **Module content** In the first part of this course, numerical procedures and some underlying theory for solving systems of equations, eigenvalue problems, integration, approximation and boundary value problems will be discussed. The second part of the course covers general finite element theory, discretization aspects related to geometry, nodes and numbering, element type and shape, interpolation functions, formulation of element characteristic matrices and vectors for elasticity problems, assembly and solution of the finite element equations, modelling procedures and results processing. The student will use Finite Element software to apply the theory that was covered in the course for solving typical Civil Engineering problems. ### Infrastructure management 790 (SSI 790) Module credits 24.00 NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### Module content A research term paper will be prepared. This module will cover the following topics: Asset Management principles, Maintenance Management principles, Maintenance strategies and philosophies, Condition based Maintenance, Reliability Centred Maintenance (RCM), Resource Management, Maintenance Management Systems, Total Productive Maintenance (TPM) and Risk Management. Maintenance management of the following disciplines will be studied in detail: Road infrastructure, Railway infrastructure, Airport infrastructure, Buildings and other structures, Water resources and water supply. #### Transportation special 791 (SVC 791) Module credits 24.00 NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### **Module content** A research term paper will be prepared. Module specially compiled to satisfy specific needs. ### **Multimodal transport 788 (SVV 788)** Module credits 24.00 NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### **Module content** A research term paper will be prepared. The role of public transport in cities; theory and principles of public transport network design, scheduling and operations; terminals; public transport modes; costs, fares and subsidies; contemporary issues and approaches to public transport restructuring and formalisation in South Africa, including Bus Rapid Transit (BRT). Planning and designing for non-motorised transport, including pedestrians, bicyclists, and animal-drawn transport. # Geometric design and safety 791 (SVV 791) Module credits 24.00 NQF Level 08 **Prerequisites** No prerequisites. **Contact time** 40 Contact hours **Language of tuition** Module is presented in English **Department** Civil Engineering **Period of presentation** Year #### Module content A research term paper will be prepared. Rural/Peri-urban road networks: transportation policy, standards and safety, environmental quality, capacity, design, interchanges. Urban street networks: functional classes, town planning considerations, capacities, environment, safety, standards design, evaluation of road networks. Traffic safety in global and national content, Road Safety Engineering and the assessment and interpretation of accident information, reactive and proactive identification of remedial measures, traffic safety strategies: 3E model and Haddon matrix. The information published here is subject to change and may be amended after the publication of this information. The **General Regulations** (**G Regulations**) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.