Yearbooks

Programme: BEngHons Electronic Engineering

Kindly take note of the disclaimer regarding qualifications and degree names.
Code Faculty
12240092 Faculty of Engineering, Built Environment and Information Technology
Credits Duration NQF level
Minimum duration of study: 1 year Total credits: 128 NQF level:  08

Programme information

The curriculum is determined in consultation with the relevant heads of departments. A student is required to pass modules to the value of at least 128 credits.

The degree is awarded on the basis of examinations only.

Admission requirements

  • A BEng degree awarded by the University of Pretoria (or equivalent); or a four-year bachelor’s degree in engineering that ECSA regards as acceptable for registration as a candidate engineer and for eventual registration as a professional engineer.
  • The departmental Postgraduate Committee reserves the right to make a thorough assessment of the applicant's academic transcript and CV, and to decide if the applicant is suitable for postgraduate studies. This assessment may include an oral or written entrance examination.

Other programme-specific information

Students may take modules to the value of 32 credits from other fields of specialisation or from other departments, with approval of the Coordinator: Postgraduate Studies.

Examinations and pass requirements

  1. The examination in each module for which a student is registered, takes place during the normal examination period after the conclusion of lectures (i.e. October/November or May/June).
  2. A student registered for the honours degree must complete his or her studies within two years (full-time), or within three years (part-time) after first registration for the degree: Provided that the Dean, on recommendation of the relevant head of department, may approve a stipulated limited extension of this period.
  3. A student must obtain at least 50% in an examination for each module where no semester or year mark is required. A module may only be repeated once.
  4. In modules where semester or year marks are awarded, a minimum examination mark of 40% and a final mark of 50% is required.
  5. No supplementary or special examinations are granted at postgraduate level.

Pass with distinction

A student passes with distinction if he or she obtains a weighted average of at least 75% in the first 128 credits for which he or she has registered (excluding modules which were discontinued timeously). The degree is not awarded with distinction if a student fails any one module (excluding modules which were discontinued timeously).

Minimum credits: 128

EIN 732 is a compulsory module. With permission from the department it may be substituted with:

EPT 732 OR

EPT 733

EIN 732 is 'n verpligte module. Met toestemming van die departement mag dit vervang word met:

EPT 732 OF

EPT 733

Core modules

  • Module content:

    This module provides the theoretical background necessary to understand, research and develop real-world software and hardware systems that incorporate and exhibit intelligent behaviour. The module incorporates advanced theory from fields such as Artificial Intelligence, Computational Intelligence, Machine Learning, Pattern Recognition and Signal Processing. Core topics of the module include: Bayesian Theory, Neural Networks, Kernel Methods, Graphic Models, and Numerical Bayesian Methods.

    View more

  • Module content:

    The aim of the module is to augment the general background provided by the EAI 732 module with the specific theoretical background required for MEng. The module will, depending on the intended research field of the student, incorporate advanced theory from fields such as: Digital Image Processing, Computer and Robotic Vision, Probabilistic Robotics, Data Fusion, Hardware and Software Parallel Processing, Real-Time and Reactive Systems.

    View more

  • Module content:

    The objective of the module is to teach the engineering student how to apply engineering tools to the analysis of biological systems for the purpose of (i) developing understanding of the anatomy and physiology of specific biological systems from an engineering perspective, (ii) deriving appropriate mathematical descriptions of biological systems, and (iii) engineering applicable therapeutic interventions. We will expand on the single nerve fibre studies considered in bioelectricity and electronics: where the latter examined the biophysics of single excitable cells (and electrostimulation thereof), this module will develop it into an analysis of the characteristics of populations of neurons. We will systematically develop a systems-level perspective, working our way through the hierarchical organisation of neural encoding and computation. Furthermore, we will discuss how to measure characteristics and parameters of a particular system (the auditory system) and how to glean information about lower hierarchical levels from these measurements. This is a course in modelling and measurement, using tools from signal processing, control systems, dynamics, probability theory, systems engineering and psychoacoustics.

    View more

  • Module content:

    This module focuses on electrophysiology, using a quantitative approach. Topics covered in the first part of the module are: electrical properties of the nerve cell membrane, action potentials and the Hodgkin-Huxley model, cable theory, the neuromuscular junction, and extracellular fields. The second part of the module builds on this background to discuss the theory and practice of electrical nerve stimulation. Applications of the theoretical work is discussed, including functional electrical stimulation (e.g. electrostimulation used for standing and walking in paraplegics), and cochlear implants for the deaf.

    View more

  • Module content:

    The course provides an introduction to modelling of bioelectromagnetic systems using numerical methods. It focuses on the study of the interaction of electromagnetic fields with biological systems and application of this knowledge in the modelling of biological volume conduction problems. The finite element technique is used to analyse volume conduction problems. Students are introduced to an industry standard finite element software package, ANSYS, that is used to complete the practical component of the course.

    View more

  • Module content:

    Optimal control of dynamic systems: continuous time systems, the Euler Lagrange equations, minimum time problems, the Pontryagin maximum principle; feasible control: computation of control input strategies for nonlinear systems such that the given control specifications are satisfied; feedback control of dynamic systems: dynamic programming for continuous time and discrete time nonlinear systems; applications in manufacturing systems; parametrisations of nonlinear/intelligent controller structures and applications of feasible control; linear systems: linear optimal control, linear optimal observers; application of feasible control in the computation of linear optimal output feedback controllers such that the design specifications are satisfied including: robustness against parameter variations, disturbance rejection, command following, frequency domain specifications.

    View more

  • Module content:

    Energy management theory, energy policy and strategic planning, load factor, diversity factor, load profiles, disaggregated load profiles, load duration plots, scatter plots, co-incident maximum demand, after-diversity maximum demand, seasonal swing, energy auditing, electricity pricing theory, electricity tariffs, energy norms, energy process modelling, demand-side management.

    View more

  • Module content:

    *This is a compulsory module.

    The aim of this module is to teach students to critically evaluate research literature, including conference papers and journal articles, in order to determine the current state of knowledge in a particular specialist area. It will also provide students with the principles of research to enable them to conduct research and prepare an original project in their particular specialist area.

    View more

  • Module content:

    WSN consist of individual nodes interacting with their environment by sensing or controlling physical parameters; these nodes have to collaborate (using wireless communication) to fulfil their tasks. The course can be structured in two parts: architectures covering single node and network architectures, and communication protocols focusing on algorithms and protocols relevant to wireless sensor networks. The latter include the physical layer, MAC protocols, link-layer, naming and addressing, time synchronisation, localisation and positioning, topology control, routing protocols, data-centric and content-based networking, transport layer an QoS, and advanced application support (e.g. security).

    View more

  • Module content:

    Radar, including aspects such as: radar frequency bands and their characteristics, radar types (eg tracking vs search radar), the radar range equation, radar cross-section (RCS), target characteristics such as scintillation and glint, pulse compression, coherent and non-coherent integration (eg Doppler processing), range and Doppler ambiquities, target tracking including simple tracking filters and angle-tracking techniques (eg monopulse), high range-resolution (HRR) techniques, and environmental effects such as atmospheric attenuation and multipath. Electronic attack (EA) - also referred to as jamming or electronic countermeasure (ECM) - including the relationship between good system design and EP, and basic EP techniques to counter the EA techniques listed above.

    View more

  • Module content:

    The role of electronic support (ES) receivers from tactical and strategic perspectives. ES system architectures including analogue and digital receivers. The following topics will be considered: signal detection, parameter estimation including direction finding (DF) angle of arrival (AoA) estimation and pulse repitition interval (PRI) tracking, emitter classification and low probability of detection (LPD) and low probability of intercept (LPI) techniques to counter ES receivers.

    View more

  • Module content:

    Types of antennas and radiation mechanisms, parameters of antennas, radiation integrals, near and far field radiation, duality theorem, wire antennas, antenna arrays, mutual coupling and mutual impedance, surface equivalence theorem, reaction theorem, moment methods in antenna analysis, travelling wave antennas, microstrip antennas, horn antennas, physical optics, reflector antennas, antenna synthesis.

    View more

  • Module content:

    Introduction to linear dynamic systems: Modes, stability, controllability, observability, multivariable poles and zeros, state-space and transfer function descriptions. Singular values and singular value decomposition. Feedback performance specifications in the frequency domain. Synthesis via state space methods. Optimal control techniques, model predictive control.

    View more

  • Module content:

    The integrated circuit (IC) or “chip” is the motor of the present electronic revolution. The ever-increasing impact of electronics is driven mainly by large-scale ICs such as processor and memory chips. The electronic circuit techniques used in these chips can only be understood on a deep level by a study of classical analogue electronics aimed at integrated circuit design for fabrication in CMOS, bipolar and BiCMOS processes. In addition, analog circuit techniques perform an essential role in the interfaces between the “real world” and digital systems. Examples are: voltage references, amplifiers, filters, level-converters, buffers. Important topics in this respect are feedback and stability theory as specialized for electronic circuits. The course includes: IC fabrication technology, models for IC transistors, transistor current sources and amplifiers, output stages, operational amplifiers, frequency response and stability of feedback amplifiers, nonlinear and computational circuits.

    View more

  • Module content:

    Introduction to radio communication systems, small signal amplifiers, multistage amplifiers, differential amplifiers, network noise, intermodulation distortion, noise factor and sensitivity, frequency selective networks, impedance matching, high frequency amplifiers, broadbanding techniques, AGC, oscillators, phase-locked loops, PLL applications, frequency synthesizers, power amplifiers, modulators and demodulators, frequency mixers.

    View more

  • Module content:

    Review of EM theory and transmission lines, analysis of transmission lines and waveguides, microwave network analysis, impedance matching, power dividers, couplers and hybrids, microwave filters.

    View more

  • Module content:

    In this module, a brief introduction about energy systems, energy system modelling and optimisation, and Matlab applications in energy optimisation problems are given. Practical industrial (as well as residential) energy management problems such as the load shifting for geysers, conveyor belts and pumping systems in terms of time-of-use tariff and/or maximum demand charge are covered.

    View more

  • Module content:

    This module will cover the essential theoretical background of the student’s proposed M Eng topic and include inter alia the following:
    (i) Field definition and descriptions
    (ii) In-depth study into background and theory relevant to the problem to be addressed
    (iii) Problem definition and description
    (iv) Mathematical simulations of the problem

    View more

  • Module content:

    This module will include extensive laboratory experiments to test the principles and possible solutions of the proposed M Eng research project and will include inter alia the following. These will include hardware and/or software experiments:
    (i) Introduction to instrumentation and measuring techniques in general and specifically as applied in the field of research.
    (ii) Structured laboratory work to introduce the specific problem investigated for the research undertaken.
    (iii) Structured laboratory work to test the proposed solution for the problem addressed.
    (iv) Confirmation experiments.

    View more

  • Module content:

    Review of computer networks infrastructure: The review will cover elementary concepts in computer networks; covering data communications, wide area networks, and local area networks.
    Networking protocols: This section will explore both the architectural principles and mechanisms required for the exchange of data among computers, workstations, servers, and other data processing devices. Much of the material in this part relates to the TCP/IP protocol suite. Recent developments and state-of-art issues will also be focused upon.
    Applications, service models and convergence of networks: This section will look at the application layer and explore various service models in the context of convergence. Students will be introduced to various Next Generation Networks technologies and issues.
    Modelling and simulation: This section will cover research issues in computer networks. Students will be introduced to modelling, simulation techniques and tools.

    View more

  • Module content:

    Digital Communications ETD 732 is a first semester graduate course in Electronic Engineering, presented by the Signal Processing and Telecommunications Group, in collaboration with the Centre for Radio and Digital Communication (CRDC). The content of the course is as follows: Introduction to digital communications, digital communications applications and services. Review of: probability and stochastic processes, source coding, characterisation of communication signals and systems and optimum receivers for the AWGN channel. Advanced synchronisation systems: Carrier and symbol recovery. Shannon’s channel capacity theorem and introduction to coding. Signal design for band-limited channels. Digital modulation techniques. Communication through band-limited linear filter channels. Introduction to adaptive equalisation. Spread spectrum signals for digital communications. Simulation of digital communication systems. Digital realisation of digital communication subsystems. Digital communication laboratory.

    View more

  • Module content:

    Telecommunication systems engineering ETT 732 is a first semester graduate course in Electronic Engineering, presented by the Signals and Telecommunications Group. This module provides an Introduction to telecommunication concepts, telecommunication systems, virtual private networks (VPN), advanced intelligent networks (AIN), local number portability (LNP), computer-to-telephony integration (CTI), signalling system 7 (SS7), CTI technologies and application, ISDN, frame relay, ATM, ATM and frame relay internetworking, data over power lines, xDSL, microwave and radio-based systems, local multipoint distribution services (LMDS), specialized mobile radio (SMR), cellular communication, GSM, personal communication services (PCS), wireless data communication (Mobile IP), satellite communication (Networking, LEO), Sonet and SDH, wave division multiplexing (WDM), the internet (TCP/IP, VoIP, networking, management).

    View more


The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

COVID-19 Corona Virus South African Resource Portal

To contact the University during the COVID-19 lockdown, please send an email to [email protected]

FAQ's Email Us Virtual Campus Share Cookie Preferences