Yearbooks

Adaptive computation and machine learning 803


 
Modulekode NEP 803
Kwalifikasie Postgraduate
Fakulteit Faculty of Natural and Agricultural Sciences
Module-inhoud

Introduction: Basic concepts. Supervised learning setup: Least means squares, logistic regression, perceptron, exponential family, generative learning algorithms, Gaussian discriminant analysis, naïve Bayes, support vector machines, model selection and feature selection. Learning theory: bias/variance tradeoff, union and Chernoff/Hoeffding bounds, VC dimension, worst case (online) learning. Unsupervised learning: clustering, k-means, expectation maximisation, mixture of Gaussians, factor analysis, principal components analysis, independent components analysis. Reinforcement learning and control: Markov decision processes, Bellman equations, value iteration and policy iteration, Q-learning, value function approximation, policy search, reinforce, partially observable Markov decision problems.

Modulekrediete 15.00
Prerequisites No prerequisites.
Language of tuition Module is presented in English
Department Statistics
Period of presentation Semester 1 or Semester 2

Die inligting wat hier verskyn, is onderhewig aan verandering en kan na die publikasie van hierdie inligting gewysig word.. Die Algemene Regulasies (G Regulasies) is op alle fakulteite van die Universiteit van Pretoria van toepassing. Dit word vereis dat elke student volkome vertroud met hierdie regulasies sowel as met die inligting vervat in die Algemene Reëls sal wees. Onkunde betrefffende hierdie regulasies en reels sal nie as ‘n verskoning by oortreding daarvan aangebied kan word nie.

Copyright © University of Pretoria 2022. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences