

University of Pretoria Yearbook 2018

BSc Biotechnology (02133403)

Minimum duration of study

3 years

Total credits

428

Admission requirements

- The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement; a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution; and a candidate who is a graduate of another faculty at the University of Pretoria.
- Life Orientation is excluded in the calculation of the Admission Point Score (APS).
- Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.

Minimu	m requir	ements										
Achieve	ment le	vel										
Afrikaans or English				Mathematics			Physical Science				APS	
NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
5	3	С	С	5	3	С	С	5	3	С	С	30

Candidates who do not comply with the minimum admission requirements for BSc (Bioctechnology), may be considered for admission to the BSc – Extended programme for the Biological and Agricultural Sciences. The BSc – Extended programme takes place over a period of four years instead of the normal three years.

BSc - Extended programme for the Biological and Agricultural Sciences:

Minimum req	uirements												
Achievement	level												
	Afrikaans	or Englis	sh		Mathema	atics			Physical	Science			A DC
	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
BSc – Extended programme for the Biological and Agricultural Sciences	4	3	D	D	4	3	D	D	4	3	D	D	24

Other programme-specific information

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or

otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor's degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student's responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty

All students whose academic progress is not acceptable can be suspended from further studies.

- A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
- A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
- Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
- Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed

in writing.

- Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senior Appeals Committee.
- Any decision taken by the Senior Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Curriculum: Year 1

Minimum credits: 140

Minimum credits:

Fundamental = 12Core = 128

Additional information:

Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Fundamental modules

Academic information management 102 (AIM 102)

Module credits	6.00
	Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities
Service modules	Faculty of Law Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology and Religion Faculty of Veterinary Science

 Prerequisites
 No prerequisites.

 Contact time
 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Information Science

Period of presentation Semester 2

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Academic information management 111 (AIM 111)

Module credits	4.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities Faculty of Law Faculty of Health Sciences Faculty of Natural and Agricultural Sciences Faculty of Theology and Religion

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Information Science

Period of presentation Semester 1

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

Academic information management 121 (AIM 121)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology and Religion Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Informatics

Period of presentation Semester 2

Module content

Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Language and study skills 110 (LST 110)

Module credits 6.00

Service modules Faculty of Natural and Agricultural Sciences

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Module is presented in English

Department Unit for Academic Literacy

Period of presentation Semester 1

The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.

Academic orientation 102 (UPO 102)

Module credits

Afrikaans and English are used in one class Language of tuition

Department Natural and Agricultural Sciences Deans Office

Period of presentation Year

Core modules

Biometry 120 (BME 120)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology Service modules

Faculty of Natural and Agricultural Sciences

Faculty of Veterinary Science

At least 4 (50-59%) in Mathematics in the Grade 12 examination, or at least 50% **Prerequisites**

in both Statistics 113, 123

Contact time 1 practical per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Statistics Department

Period of presentation Semester 2

Module content

Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

Plant biology 161 (BOT 161)

Module	cradita	8 00
Module	creaits	\sim 0.00

Faculty of Engineering, Built Environment and Information Technology Service modules

Faculty of Education

Prerequisites MLB 111 GS

2 lectures per week, fortnightly practicals Contact time

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 2

Module content

Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

General chemistry 117 (CMY 117)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites	A candidate must have Mathematics for at least 60% and 60% for Physical Sciences.
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Chemistry
Period of presentation	Semester 1

Module content

General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

General chemistry 127 (CMY 127)

•	
Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites	Natural and Agricultural Sciences students: CMY 117 GS or CMY 154 GS Health Sciences students: none
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Chemistry
Period of presentation	Semester 2

Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

Introductory genetics 161 (GTS 161)

Module credits 8.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Veterinary Science

Prerequisites MLB 111 GS

Contact time 2 lectures per week, fortnightly practicals

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 2

Module content

Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions and epistasis. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Extranuclear inheritance. Genetic linkage and chromosome mapping. Chromosome variation.

Introduction to microbiology 161 (MBY 161)

Module credits 8.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites MLB 111 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Microbiology and Plant Pathology

Period of presentation Semester 2

Module content

The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

Molecular and cell biology 111 (MLB 111)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Health Sciences

Faculty of Veterinary Science

Prerequisites A candidate who has passed Mathematics with at least 60% in the Grade 12

examination

Contact time 1 practical per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Genetics

Period of presentation Semester 1

Module content

Introductory study of the ultra structure, function and composition of representative cells and cell components. General principles of cell metabolism, molecular genetics, cell growth, cell division and differentiation.

Physics for biology students 131 (PHY 131)

Module credits 16.00

Faculty of Education

Service modules Faculty of Health Sciences

Faculty of Veterinary Science

Prerequisites A candidate must have passed Mathematics with at least 60% in the Grade 12

examination

Contact time 1 discussion class per week, 1 practical per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Physics

Period of presentation Semester 1

Module content

Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.

Mathematics 134 (WTW 134)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Veterinary Science

PrerequisitesRefer to Regulation 1.2: At least 50% for Mathematics in the Grade 12

examination .

Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year.

Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

Animal diversity 161 (ZEN 161)

Module credits	8.00
Service modules	Faculty of Education Faculty of Veterinary Science
Prerequisites	MLB 111 GS or TDH
Contact time	2 lectures per week, fortnightly practicals
Language of tuition	Separate classes for Afrikaans and English
Department	Zoology and Entomology

Period of presentation Semester 2

Module content

Animal classification, phylogeny, organization and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive, respiratory, excretory, circulatory and digestive systems.

Curriculum: Year 2

Minimum credits: 144

Minimum credits:

Core = 108Elective = 36

Additional information:

Electives may be chosen from BCM 262, BME 210, DAF 200, FST 250, GGY 283, GKD 250, MBY 262, PLG 251, PLG 262, PPK 251 or [ZEN 251 and ZEN 261] or other module/s subject to TDH.

Please note:

- Students interested in continuing with **Biochemistry** at postgraduate level must take BCM 262
- Students interested in continuing with **Microbiology** at postgraduate level must take MBY 262

Core modules

Introduction to proteins and enzymes 251 (BCM 251)

Module credits	12.00
Service modules	Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	2 lectures per week, 90 minute practical per week
Language of tuition	Afrikaans and English are used in one class
Department	Biochemistry
Period of presentation	Semester 1

Module content

Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Introduction to enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes. Practical training in laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules. Processing and presentation of scientific data.

Carbohydrate metabolism 252 (BCM 252)

Module credits	12.00
Service modules	Faculty of Education Faculty of Health Sciences
Prerequisites	CMY 117 GS and CMY 127 GS and MLB 111 GS
Contact time	2 lectures per week, 90 minute practical per week

Language of tuition Afrikaans and English are used in one class

Department Biochemistry

Period of presentation Semester 1

Module content

Biochemistry of carbohydrates. Thermodynamics and bioenergetics. Glycolysis, citric acid cycle and electron transport. Glycogen metabolism, pentose-phosphate pathway, gluconeogenesis and photosynthesis. Practical training in study and analysis of metabolic pathways and enzymes. Scientific method and design: Hypothesis design and testing, method design and scientific controls.

Lipid and nitrogen metabolism 261 (BCM 261)

Module credits 12.00

Service modules Faculty of Health Sciences

Prerequisites CMY 117 GS and CMY 127 GS and MLB 111 GS

Contact time 2 lectures per week, 90 minute practical per week

Language of tuition Afrikaans and English are used in one class

Department Biochemistry

Period of presentation Semester 2

Module content

Biochemistry of lipids, membrane structure, anabolism and catabolism of lipids. Nitrogen metabolism, amino acid biosynthesis and catabolism. Biosynthesis of neurotransmitters, pigments, hormones and nucleotides from amino acids. Catabolism of pureness and pyrimidines. Therapeutic agents directed against nucleotide metabolism. Examples of inborn errors of metabolism of nitrogen containing compounds. The urea cycle, nitrogen excretion. Practical training in scientific writing skills: evaluation of a scientific report. Techniques for separation and analysis of biological molecules

South African flora and vegetation 251 (BOT 251)

Module	crodite	12.00
Module	credits	12.00

Service modules Faculty of Education

PrerequisitesBOT 161 or permission from head of department

Contact time 1 practical per week, 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 1

Module content

Origin and affinity of South African flora and vegetation types; principles of plant geography; plant diversity in southern Africa; characteristics, environments and vegetation of South African biomes and associated key ecological processes; centra of plant endemism; rare and threatened plant species; biodiversity conservation and ecosystem management; invasion biology; conservation status of South African vegetation types.

Plant physiology and biotechnology 261 (BOT 261)

Module credits 12.00

Service modules Faculty of Education

Prerequisites BOT 161, CMY 117, CMY 127 or permission from head of department

Contact time 1 practical per week, 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 2

Module content

Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing drought tolerant and disease resistant plants.

Molecular genetics 251 (GTS 251)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites GTS 161 GS

Contact time 2 lectures per week, fortnightly practicals

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 1

Module content

Chemical nature of DNA. Replication transcription, RNA processing and translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.

Genetic diversity and evolution 261 (GTS 261)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites GTS 251 GS

Contact time 2 lectures per week, fortnightly practicals

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 2

Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.

Bacteriology 251 (MBY 251)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites MBY 161 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Microbiology and Plant Pathology

Period of presentation Semester 1

Module content

Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis. Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.

Mycology 261 (MBY 261)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites MBY 161

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Microbiology and Plant Pathology

Period of presentation Semester 2

Module content

Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.

Elective modules

Biochemical principles of nutrition and toxicology 262 (BCM 262)

Module credits 12.00

Service modules Faculty of Health Sciences

Prerequisites CMY 117 GS and CMY 127 GS and MLB 111 GS

Contact time 2 lectures per week, 90 minute practical per week

Language of tuition Afrikaans and English are used in one class

Department Biochemistry

Period of presentation Semester 2

Module content

Biochemistry of nutrition and toxicology. Proximate analysis of nutrients. Review of energy requirements and expenditure. Respiratory quotient. Requirements and function of water, vitamins and minerals. Interpretation and modification of RDA values for specific diets, eg growth, exercise, pregnancy and lactation, aging and starvation. Interactions between nutrients. Comparison of monogastric and ruminant metabolism. Cholesterol, polyunsaturated, essential fatty acids and dietary anti-oxidants. Oxidation of fats. Biochemical mechanisms of water- and fat-soluble vitamins and assessment of vitamin status. Mineral requirements, biochemical mechanisms, imbalances and diarrhoea. Biochemistry of xenobiotics: absorption, distribution, metabolism and excretion (ADME); detoxification reactions: oxidation/reduction (Phase I), conjugations (Phase II), export from cells (Phase III); factors affecting metabolism and disposition. Toxic responses: tissue damage and physiological effects, teratogenesis, immunotoxicity, mutagenesis and carcinogenesis. Examples of toxins: biochemical mechanisms of common toxins and their antidotes. Antibiotics and resistance. Natural toxins from fungi, plants and animals: goitrogens, cyanogens, cholineesterase inhibitors, ergotoxin, aflatoxins Practical training in analyses of nutrients, fatty acids separations, antioxidant determination, and enzyme activity measurements, PO ratio of mitochondria, electrophoresis, extraction, solubility and gel permeation techniques.

Biometry 210 (BME 210)

Module credits 24.00

Service modules Faculty of Natural and Agricultural Sciences

Prerequisites BME 120

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Statistics

Period of presentation Semester 1

Module content

Analysis of variance: Multi-way classification. Testing of model assumptions, graphics. Multiple comparisons. Fixed, stochastic and mixed effect models. Block experiments. Estimation of effects. Experimental design: Principles of experimental design. Factorial experiments: Confounding, single degree of freedom approach, hierarchical classification. Balanced and unbalanced designs. Split-plot designs. Analysis of covariance. Computer literacy: Writing and interpretation of computer programmes. Report writing.

Animal anatomy and physiology 200 (DAF 200)

Module credits 32.00

Prerequisites CMY 127 or permission from head of department

Contact time 1 practical every 2nd week, 4 lectures per week

Language of tuition Module is presented in English

Department Animal and Wildlife Sciences

Period of presentation Year

Module content

The body cavities, the origin of trunk wall and the principle arrangement of other anatomical structures as explained by the basic embryological development of mammals. Introduction to anatomy and anatomical terminology. Introduction to basic histology of cells, epithelial tissue and connective tissue. Basic anatomy of tissues, organs, systems and joints. Anatomy of the musculo-skeletal system integrated, the histology of connective tissue and muscles. The anatomy and histology of the integument and skin structures, the cardiovascular, respiratory, immune, endocrine, urogenital and digestive systems all of which serves as basis for the physiology component of the module. General species differences of the anatomy and histology where applicable.

Introduction to food science and technology 250 (FST 250)

Module credits 12.00

Prerequisites CMY 117 and CMY 127 and PHY 131 and WTW 134 or WTW 165 or TDH

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Food Science

Period of presentation Semester 1

Module content

Lectures: Food Science as a discipline. Activities of Food Scientists and Nutritionists. How food is produced, processed and distributed (food pipeline). World food problem. Human nutrition and human food requirements. Constituents of foods: Functional properties. Food quality. Food deterioration and control (food preservation). Unit operations in food processing. Food safety, risks and hazards. Principles of food packaging. Food legislation and labelling. Food processing and the environment. Practicals: Group assignments applying the theory in practice; practical demonstrations in pilot plants; guest lecturers on the world of food scientists and nutritionists; factory visit/videos of food processing.

Introductory soil science 250 (GKD 250)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites CMY 117 GS or TDH

Contact time 1 practical per week, 3 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 1

Module content

Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

Food microbiology 262 (MBY 262)

Module credits	12.00
Prerequisites	MBY 251
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Microbiology and Plant Pathology
Period of presentation	Semester 2

Module content

Primary sources of migroorganisims in food. Factors affecting the growth and survival of microorganisms in food. Microbial quality, spoilage and safety of food. Different organisms involved, their isolation, screening and detection. Conventional approaches, alternative methods rapid methods. Food fermentations: fermentation types, principles and organisms involved.

Introduction to crop protection 251 (PLG 251)

marca and the property	
Module credits	12.00
Prerequisites	No prerequisites.
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Module content

Development and importance of crop protection. Basic principles in crop protection i.e. epidemic development of disease and insect pest populations, ecology of plant diseases and abiotic factors that affect plant health i.e. environmental pollution and pesticides, nutrient deficiencies and extreme environmental conditions. Ecological aspects of plant diseases, pest outbreaks and weed invasion. Important agricultural pests and weeds. Life cycles of typical disease causing organisms. Basic principles of integrated pest and disease management.

Principles of plant pathology 262 (PLG 262)

Module credits	12.00
Prerequisites	MBY 161
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Fundamental principles of plant pathology. The concept of disease in plants. Causes of plant diseases. Stages in development of plant diseases. Disease cycles. Diagnosis of plant diseases.

Sustainable crop production and agroclimatology 251 (PPK 251)

Quarter 1

Module credits	15.00
Prerequisites	BOT 161
Contact time	3 lectures per week, fortnightly practicals
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Module content

Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.

Invertebrate biology 251 (ZEN 251)

3,	_ (
Module credits	12.00
Service modules	Faculty of Education
Prerequisites	ZEN 161 GS or TDH
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Zoology and Entomology

Module content

Period of presentation

Origin and extent of modern invertebrate diversity; parasites of man and domestic animals; biology and medical importance of arachnids; insect life styles; the influence of the environment on insect life histories; insect phytophagy, predation and parasitism; insect chemical, visual, and auditory communication; freshwater invertebrates and their use as biological indicators.

African vertebrates 261 (ZEN 261)

Module credits 12.00

Service modules Faculty of Education

Prerequisites ZEN 161 GS or TDH

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Zoology and Entomology

Period of presentation Quarter 3

Module content

Introduction to general vertebrate diversity; African vertebrate diversity; vertebrate structure and function; vertebrate evolution; vertebrate relationships; aquatic vertebrates; terrestrial ectotherms; terrestrial endotherms; vertebrate characteristics; classification; structural adaptations; habits; habitats; conservation problems; impact of humans on other vertebrates.

Curriculum: Final year

Minimum credits: 144

Minimum credits:

Core = 54Elective = 90

Additional information:

Contact the Department of Genetics for information regarding elective modules in the third year.

Core modules

Macromolecules of life: Structure-function and Bioinformatics 356 (BCM 356)

Module credits 18.00

Prerequisites BCM 251 and BCM 252

Contact time 180 minute practical per week, 2 lectures per week

Language of tuition Afrikaans and English are used in one class

Department Biochemistry

Period of presentation Semester 1

Module content

Perspectives on the flow of information from nucleic acids to proteins, the structure and functions of nucleic acids and proteins and their organisation into hierarchical, interdependent systems. Nucleic acid structure as observed in fibres and crystals as well as global DNA and RNA analyses (methods and bioinformatic analyses). Biochemical analyses of nucleotides. DNA-DNA recognition: non-standard and higher order DNA structures. The RNA structural world, RNAi, miRNA and ribosomes. Cellular functions of coding and non-coding nucleic acids. Principles of small molecule-DNA recognition. Principles of protein-DNA recognition and interactions. Bioinformatics predictions of protein and small molecule DNA interactions. Chemical reactivity of amino acids. Domain structures of proteins and Ramachandran plots. Protein folding, sequence motifs and domains, higher order and supramolecular structure, self-assembly, conjugated proteins, post-translational modifications, conjugated proteins and bioinformatics predictions. Principles of protein function and protein structure relationships. Protein-ligand and protein-protein interactions. Protein aggregation in disease. Examples of the diverse functions of proteins and peptides, including enzymes, hormones, neurotransmitters, antibodies, receptors, transport and membrane proteins. Global analysis of proteins through proteomics. Basic principles of nuclear magnetic resonance, mass spectrometry and X-ray crystallography. Protein purification and characterization including, pl, molecular mass, amino acid composition and sequence. Practical training will include interactive computer-guided demonstrations of protein analysis, hands-on practical sessions for nucleic acid purification and chemical structure characterisation, protein expression and purification (including SDS-PAGE), protein sequence analysis including mass spectrometry, protein structure analysis by 3D protein modelling and protein folding (Bioinformatics).

Eukaryotic gene control and development 351 (GTS 351)

Module credits 18.00

Prerequisites GTS 251 GS and GTS 261 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 1

Module content

Regulation of gene expression in eukaryotes: regulation at the genome, transcription, RNA processing and translation levels. DNA elements and protein factors involved in gene control. The role of chromatin structure and epigenetic changes. Technology and experimental approaches used in studying eukaryotic gene control. Applications of the principles of gene controlin embryonic development and differentiation, cancer and other diseases in humans.

Genetic manipulation of microbes 364 (MBY 364)

Module credits 18.00

Prerequisites BCM 251, CMY 127, GTS 251, GTS 261 and MBY 251

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Microbiology and Plant Pathology

Period of presentation Semester 2

Module content

Isolation of clonable DNA (genomic libraries, cDNA synthesis) cloning vectors (plasmids, bacteriophages, cosmids) plasmid incompatibility and control of copy number. Ligation of DNA fragments, modification of DNA end and different ligation strategies. Direct and indirect methods for the identification of recombinant organisms. Characterization (polymerase chain reaction, nucleic acid sequencing) and mutagenisis of cloned DNA fragments. Gene expression in Gram negative (E.coli) Gram positive (B.subtilis) and yeast cells (S.cerevisea). Use of Agrobacterium and baculoviruses for gene expression in plant and insect cells respectively. Applications in protein engineering, diagnostics and synthesis of useful products.

Elective modules

Biocatalysis and integration of metabolism 357 (BCM 357)

Module credits 18.00

Prerequisites BCM 251 and BCM 252 and BCM 261

Contact time 180 minute practical per week, 2 lectures per week

Language of tuition Afrikaans and English are used in one class

Department Biochemistry

Period of presentation Semester 1

Nomenclature: enzyme nomenclature and classification. Specificity and mechanisms: the active site, mechanisms of catalysis and examples of specific enzyme mechanisms, e.g. lysozyme and carboxypeptidase A. Advanced enzyme kinetics, Cleland nomenclature and multi-substrate reactions. Allosteric enzymes: models by Koshland, Hill and Monod. Ligands binding to proteins. Problems and answers: tutorials of problems and answers based on above concepts. Integration of metabolism; hormones and second messengers; cell signalling; a case study in connectivity among metabolic pathways and their regulation, in for example diabetes and starvation. Inhibitors of angiotensin converting enzyme (ACE). RNA as enzymes. Applications of enzymes in food and cosmetics industries and in clinical pathology assays as biomarkers of diseases and toxic responses. Elucidation of metabolic pathways.

Practical sessions cover tutorials on calculations, isolation of an enzyme, determination of pH and temperature optimum, determination of Km and Vmax, enzyme activation, enzyme inhibition, purification table and final report, oral defense of report.

Cell structure and function 367 (BCM 367)

Module credits	18.00
Prerequisites	BCM 251 and BCM 252 and BCM 261
Contact time	180 minute practical per week, 2 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Biochemistry
Period of presentation	Semester 2

Module content

Visualising cell structure and localising proteins within cells. Cell ultrastructure. Purification of subcellular organelles. Culturing of cells. Diversity and commonality of cells. Biomembrane structure. Transmembrane transport of ions and small molecules. Moving proteins into membranes and organelles. Vesicular traffic, secretion, exocytosis and endocytosis. Cell organisation and movement. Cell-cell and cell-matrix adhesion. Practical training includes tutorials on cytometry and mircoscopy, mini-research projects where students are introduced and guided through aspects of research methodology, experimental planning as well as techniques associated with cellular assays. Active transport studies in yeast cells.

Molecular basis of disease 368 (BCM 368)

Module credits	18.00
Prerequisites	BCM 251 and BCM 252 and BCM 261
Contact time	180 minute practical per week, 2 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Biochemistry
Period of presentation	Semester 2

Normal and abnormal regulation of the cell cycle: The biochemistry of proliferation, quiescence, senescence, differentiation and apoptosis, illustrated by cancer. Host-Pathogen co-evolution: How adaptive immunity emerged from innate immunity. Infection: Molecular and cellular immunobiochemistry of protection against viral, bacterial and parasitic pathogens. Auto-immunity: Molecular mechanisms of the maintenance and failure of the recognition of foreign in the context of self in the mammalian body. Practical training includes debate on ethics of research on animal and human diseases, experimental design and execution of an immunoassay to test for a biomarker antibody of an infectious disease, tutorials to determine the performance of a diagnostic test for disease, including the principle of ROC curve analysis, positive and negative predictiveness, sensitivity, specificity and accuracy, applications of polyclonal and monoclonal antibodies for characterisation of disease with fluorescence, confocal and electron microscopy, flow cytometry and biosensors.

Plant ecophysiology 356 (BOT 356)

Module credits	18.00
Service modules	Faculty of Education
Prerequisites	BOT 161 or permission from head of department
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Module content

The emphasis is on the efficiency of the mechanisms whereby C3-, C4 and CAM-plants bind CO2 and how it impacted upon by environmental factors. The mechanisms and factors which determine the respiratory conversion of carbon skeletons and how production is affected thereby will be discussed. Insight into the ecological distribution and manipulation of plants for increased production is gained by discussing the internal mechanisms whereby carbon allocation, hormone production, growth, flowering and fruitset are influenced by external factors. To understand the functioning of plants in diverse environments, the relevant structural properties of plants, and the impact of soil composition, water flow in the soil-plant air continuum and long distance transport of assimilates will be discussed. Various important techniques will be used in the practicals to investigate aspects such as water-use efficiency, photosynthesis and respiration of plants.

Plant ecology 358 (BOT 358)

Module credits	18.00
Module Credits	16.00
Prerequisites	BOT 161 and BOT 251 or permission from head of department
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Theory of plant community concepts, floristic and structural composition, plant diversity, ecological succession, landscape ecology. Data processing techniques. Species interactions and an evaluation of their effects on interacting species. Fundamentals of plant population biology: life tables; plant breeding systems and pollination; population dynamics; life history strategies; intraspecific competition; interspecific competition and co-existence.

Phytomedicine 365 (BOT 365)

Module credits	18.00
Service modules	Faculty of Education
Prerequisites	BOT 161 or permission from head of department
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Department of Plant and Soil Sciences

Period of presentation Semester 2

Module content

The module will include a review on the discovery and use of plant medicines and phyto-therapeutically important molecules obtained from plants. Certain aspects of natural product chemistry i.e. the biosynthesis, ecological role and toxicity of the three main classes of secondary compounds; terpenoids, phenolics, and alkaloids are discussed. An introduction to the principles and applications of metabolomics is presented. The role of these natural products in defense against microorganisms and herbivores is reviewed during the module. The importance of ethnobotany and phylogenetics in modern drug discovery from biodiversity will presented along with legal and ethical considerations surrounding bioprospecting. This will follow on with modern theories and practices regarding sustainable utilisation and conservation of medicinal plants. The basics of alternative medicines, with an emphasis on traditional African and Chinese medicines, are also discussed as well as current evidence-based research and product development derived from these. Biotechnological approaches to medicinal natural product production, 'farmer to pharma', will be covered, including plant cell culture and bioreactors. Practical sessions on drug discovery approaches using chromatographic techniques for phytochemical analysis of secondary metabolites such as tannins, alkaloids, and saponins are conducted. Bioassays on micro-organisms are also done during the practical sessions in order to develop the skills for the potential discovery of new antibiotics.

Plant diversity 366 (BOT 366)

raine diversity 500 (50)	
Module credits	18.00
Service modules	Faculty of Education
Prerequisites	BOT 161 or permission from head of department
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Basic principles and methods of plant classification. Sources of plant variation. Modern methods to ascertain evolutionary relationships among plants. The extent and significance of vascular plant diversity. General structural and biological characteristics of evolutionary and ecologically important plant groups. Botanical nomenclature. Plant identification in practice; identification methods, keys, herbaria and botanical gardens. Diagnostic characters for the field identification of trees, wild flowers and grasses. Family recognition of southern African plants. Available literature for plant identification. Methods to conduct floristic surveys. Nature and significance of voucher specimens.

Plant genetics and crop biotechnology 361 (BTC 361)

3	
Module credits	18.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GTS 251 and {GTS 261 GS or BOT 261} and {GTS 351 and GTS 352 are recommended}
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Genetics
Period of presentation	Semester 2

Module content

Plant genetics and genomics: gene control in plants, epigenetics, co-suppression, forward and reverse genetics, structural and functional genomics. Plant development: signal perception, cell death, control of cell division. Plant-environment interactions. Crop genetic modification: food security, GMO regulation, plant transformation, whole-chromosome transformation, synthetic biology, homologous recombination. Crop molecular markers: marker types, genotyping, QTL mapping, marker-assisted breeding. Future of crop biotechnology: applications of genomics, biopharming, genetical genomics, systems biology

Genome evolution and phylogenetics 354 (GTS 354)

Module credits	18.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GTS 251 GS and GTS 261 GS
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Genetics
Period of presentation	Semester 1

Module content

Mechanisms involved in the evolutions of genomes. Comparison of the molecular organisation of viral, archaea, eubacterial and eukarytotic genomes. Genome project design, DNA sequencing methods and annotation. Molecular evolution. Phylogenetic inference methods. Applications of phylogenetics and contemporary genome research.

Population and evolutionary genetics 367 (GTS 367)

Module credits 18.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GTS 251 and GTS 261

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 2

Module content

Genetic and phenotypic variation. Organisation of genetic variation. Random genetic drift. Mutation and the neutral theory. Darwinian selection. Inbreeding, population subdivision and migration. Evolutionary quantitative genetics. Population genomics. Human population genetics. Levels of selection and individuality. Arms races and irreversibility. Complexity. Applied evolution.

Genetics in human health 368 (GTS 368)

Module credits 18.00

Prerequisites GTS 251 and GTS 261 GS

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Genetics

Period of presentation Semester 2

Module content

Application of modern genetics to human variability, health and disease. Molecular origin of Mendelian and multifactorial diseases. The use of polymorphisms, gene mapping, linkage and association studies in medical genetics. Genetic diagnosis – application of cytogenetic, molecular and genomic techniques. Congenital abnormalities, risk assessment and genetic consultation. Prenatal testing, population screening, treatment of genetic diseases and gene-based therapy. Pharmacogenetics and cancer genetics. Ethical aspects in medical genetics.

Virology 351 (MBY 351)

Module credits 18.00

Prerequisites BCM 251, CMY 127, GTS 251, GTS 261 and MBY 161

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Microbiology and Plant Pathology

Period of presentation Semester 1

Introduction to the viruses as a unique kingdom inclusive of their different hosts, especially bacteria, animals and plants; RNA and DNA viruses; viroids, tumour viruses and oncogenes, mechanisms of replication, transcription and protein synthesis; effect on hosts; viral immunology; evolution of viruses.

Bacterial genetics 355 (MBY 355)

Module credits	18.00
Prerequisites	BCM 251, CMY 127, GTS 251, GTS 261 and MBY 251
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Microbiology and Plant Pathology
Period of presentation	Semester 1

Module content

DNA replication and replication control. DNA recombination. DNA damage and repair. Genetics of bacteriophages, plasmids and transposons. Bacterial gene expression control at the transcriptional, translational and post-translational levels. Global regulation and compartmentalisation.

Microbe interactions 365 (MBY 365)

Module credits	18.00
Prerequisites	MBY 251, MBY261, MBY 351 and MBY 355
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Microbiology and Plant Pathology
Period of presentation	Semester 2

Module content

Interactions between microbes and their abiotic environment; microbial interaction with other strains of the same and other species; microbial interactions across kingdoms; pathogenic interactions between microbes and plant or animal hosts; mutualistic interactions between microbes and their hosts; introduction to systems biology.

General plant pathology 351 (PLG 351)

Module credits	18.00
Prerequisites	MBY161, MBY261 and PLG262
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 1

Principles and examples of plant diseases and their socio-economic importance. Current trends in plant pathology such as biosecurity, sanitory and phytosanitary issues of trade. Risk assessment and international food safety standards. The use of global information systems to assess disease spread and impact of global warming. Supply chain analysis, postharvest technology and food trade aspects.

Plant disease control 363 (PLG 363)

Module credits	18.00
Prerequisites	PLG251 or PLG262 or TDH. MBY261 is recommended
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Department of Plant and Soil Sciences
Period of presentation	Semester 2

Module content

Principles of plant disease control. Non-chemical control including biological control, disease resistance, regulatory measures, cultivation practices, physical methods. Modern chemo-therapy: characteristics, mode of action and application of fungicides, bactericides and nematicides. Principles of integrated disease management.

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.