

University of Pretoria Yearbook 2018

BSc Meteorology (02133313)

Minimum duration of study

3 years

Total credits

404

Admission requirements

- The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement; a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution; and a candidate who is a graduate of another faculty at the University of Pretoria.
- Life Orientation is excluded in the calculation of the Admission Point Score (APS).
- Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.

Minimu	m requi	rements										
Achievement level												
Afrikaans or English				Mathematics			Physical Science			APS		
NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
5	3	С	С	5	3	С	С	5	3	С	С	32

BSc - Extended programme for the Physical Sciences:

Candidates who do not comply with the minimum admission requirements for BSc (Meteorology), may be considered for admission to the BSc – Extended programme for the Physical Sciences. The BSc – Extended programme takes place over a period of four years instead of the normal three years.

Minimum requirements													
Achievement	level												
	Afrikaans	or Englis	sh		Mathema	atics			Physical	Science			APS
	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
BSc - Extended programme for the Physical Sciences	4	3	D	D	4	3	D	D	4	3	D	D	26

Other programme-specific information

A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or

otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.

It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.

Students who are already in possession of a bachelor's degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.

The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.

Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.

It remains the student's responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.

The prerequisites are listed in the Alphabetical list of modules.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

General promotion requirements in the faculty

All students whose academic progress is not acceptable can be suspended from further studies.

- A student who is excluded from further studies in terms of the stipulations of the abovementioned regulations, will be notified in writing by the Dean or Admissions Committee at the end of the relevant semester.
- A student who has been excluded from further studies may apply in writing to the Admissions Committee of the Faculty of Natural and Agricultural Sciences for re-admission.
- Should the student be re-admitted by the Admissions Committee, strict conditions will be set which the student must comply with in order to proceed with his/her studies.
- Should the student not be re-admitted to further studies by the Admissions Committee, he/she will be informed

in writing.

- Students who are not re-admitted by the Admissions Committee have the right to appeal to the Senior Appeals Committee.
- Any decision taken by the Senior Appeals Committee is final.

Pass with distinction

A student obtains his or her degree with distinction if all prescribed modules at 300-level (or higher) are passed in one academic year with a weighted average of at least 75%, and obtain at least a subminimum of 65% in each of the relevant modules.

Curriculum: Year 1

Minimum credits: 140

Minimum credits:

Fundamental = 12

Core = 88

Electives = 40

Additional information:

Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.

Electives for the first to third year can be chosen from modules in the following departments: Geography, Geoinformatics and Meteorology, Geology, Plant Production and Soil Science, Chemistry, Plant Science, Mathematics and Applied Mathematics, Physics, Computer Science.

Fundamental modules

Academic information management 102 (AIM 102)

		C 00
Module	credits	6.00

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology and Religion Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Information Science

Period of presentation Semester 2

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Academic information management 111 (AIM 111)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Service modules Faculty of Humanities

Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology and Religion

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Information Science

Period of presentation Semester 1

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

Academic information management 121 (AIM 121)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology and Religion Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Informatics

Period of presentation Semester 2

Module content

Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Language and study skills 110 (LST 110)

Module credits 6.00

Service modules Faculty of Natural and Agricultural Sciences

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition Module is presented in English

Department Unit for Academic Literacy

Period of presentation Semester 1

Module content

The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.

Academic orientation 102 (UPO 102)

Module credits 0.00

Language of tuition Afrikaans and English are used in one class

Department Natural and Agricultural Sciences Deans Office

Period of presentation Year

Core modules

First course in physics 114 (PHY 114)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites A candidate must have passed Mathematics and Physical Science with at least

60% in the Grade 12 examination

Contact time 1 discussion class per week, 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Physics

Period of presentation Semester 1

Module content

SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes' principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton's laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton's laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.

First course in physics 124 (PHY 124)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites WTW 114 GS and PHY 114 GS

Contact time 1 discussion class per week, 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Physics

Period of presentation Semester 2

Module content

Simple harmonic motion and pendulums. Coulomb's law. Electric field: dipoles, Gauss' law. Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm's law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday's and Lenz's laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.

Atmospheric structure and processes 155 (WKD 155)

Module credits 16.00

Prerequisites At least 50% for mathematics in grade 12.

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 1

Module content

Semester 1

Introduction to weather and climate. Climate of South Africa. Urban and rural climate. Meteorological instruments. Motion of the earth. Atmospheric mass and pressure. Energy and heat budget. Moisture in the atmosphere. Cloud development. Climate change. ENSO. Electromagnetic spectrum and remote sensing in meteorology. Synoptic weather systems of South Africa.

Calculus 114 (WTW 114)

Period of presentation

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences Faculty of Humanities
Prerequisites	Refer to Regulation 1.2. Mathematics 60% Grade 12.
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Mathematics and Applied Mathematics

^{*}Students are not allowed to earn credits for WKD 155 and WKD 164

*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.

Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.

Numerical analysis 123 (WTW 123)

Module	credits	8.00
--------	---------	------

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites WTW 114 GS

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.

Mathematics 124 (WTW 124)

Module	credits	16.00
--------	---------	-------

Prerequisites WTW 114

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).

The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions, polar curves and quadratic curves.

Elective modules

General chemistry 117 (CMY 117)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Health Sciences

Faculty of Veterinary Science

Prerequisites A candidate must have Mathematics for at least 60% and 60% for Physical

Sciences.

Contact time 1 practical per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Chemistry

Period of presentation Semester 1

Module content

General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

General chemistry 127 (CMY 127)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Health Sciences

Faculty of Veterinary Science

Prerequisites

Natural and Agricultural Sciences students: CMY 117 GS or CMY 154 GS Health

Sciences students: none

Contact time 1 practical per week, 4 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Chemistry

Period of presentation Semester 2

Module content

Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

Introduction to environmental sciences 101 (ENV 101)

Module credits 8.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities

Prerequisites No prerequisites.

Contact time 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 1

Module content

Introducing the basic concepts and interrelationships required to understand the complexity of natural environmental problems, physical and human environment, human induced environmental problems, the ways in which the natural environment affects human society and biodiversity, an introduction to major environmental issues in Southern Africa and sustainable development in the context of environmental issues.

Aspects of human geography 156 (GGY 156)

Module	credits	8.00
· iouuic	Cicuits	0.0

Faculty of Engineering, Built Environment and Information Technology

Service modules

Faculty of Education Faculty of Humanities Faculty of Health Sciences

Prerequisites No prerequisites.

Contact time 1 tutorial per week, 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 2

Module content

This module begins by fostering an understanding of human geography. Then follows with the political ordering of space; cultural diversity as well as ethnic geography globally and locally; population geography of the world and South Africa: and four economic levels of development. The purpose is to place South Africa in a world setting and to understand the future of the country.

Southern African geomorphology 166 (GGY 166)

Module credits 8.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities Faculty of Health Sciences

Prerequisites No prerequisites.

Contact time 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 3

Module content

Investigating southern African landscapes and placing them in a theoretical and global context. The geomorphological evolution of southern Africa. Introduction to the concepts of Geomorphology and its relationships with other physical sciences (e.g. meteorology, climatology, geology, hydrology and biology). The processes and controls of landform and landscape evolution. Tutorial exercises cover basic techniques of geomorphological analysis, and topical issues in Geomorphology.

Introduction to geology 155 (GLY 155)

Module credits 16.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites A candidate must have passed Mathematics with at least 60% in the Grade 12

examination.

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geology

Period of presentation Semester 1

Module content

Solar system; structure of solid matter; minerals and rocks; introduction to symmetry and crystallography; important minerals and solid solutions; rock cycle; classification of rocks. External geological processes (gravity, water, wind, sea, ice) and their products (including geomorphology). Internal structure of the earth. The dynamic earth – volcanism, earthquakes, mountain building – the theory of plate tectonics. Geological processes (magmatism, metamorphism, sedimentology, structural geology) in a plate tectonic context. Geological maps and mineral and rock specimens.

Earth history 163 (GLY 163)

Module credits 16.00

PrerequisitesGLY155; a special exemption is given to 2nd-year students registered for degrees in Plant Sciences. Enterpology, Foology, and Zoology.

in Plant Sciences, Entomology, Ecology and Zoology

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geology

Period of presentation Semester 2

This module will give an overview of earth history, from the Archaean to the present. Important concepts such as the principles of stratigraphy and stratigraphic nomenclature, geological dating and international and South African time scales will be introduced. A brief introduction to the principles of palaeontology will be given, along with short descriptions of major fossil groups, fossil forms, ecology and geological meaning. In the South African context, the major stratigraphic units, intrusions and tectonic/metamorphic events will be detailed, along with related rock types, fossil contents, genesis and economic commodities. Practical work will focus on the interpretation of geological maps and profiles.

Cartography 110 (GMC 110)

Module credits	10.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	No prerequisites.
Contact time	1 practical per week, 3 lectures per week
Language of tuition	Afrikaans and English are used in one class
Department	Geography Geoinformatics and Meteorology

Period of presentation Semester 2

Module content

Spherical trigonometry. Geometrical geodesy: Datum surfaces and coordinate systems in Geodesy, Calculations on the ellipsoid, Datum transformations. Map projections: Projection principles, distortion determination, and construction of conformal, equivalent and equidistant projections, the Transverse Mercator projection and UTM projection of an ellipsoidal earth, projection transformations. Space geodesy: Time systems, Celestial and observer coordinate systems, Global Navigation Satellite Systems (GNSS), Satellite orbits and orbital parameters, 3-D positioning. A project or assignments of at least 64 notional hours.

Exploring the universe 154 (SCI 154)

Module credits	16.00
Prerequisites	Prohibited combination SCI 164
Contact time	4 lectures per week
Language of tuition	Module is presented in English
Department	Physics
Period of presentation	Semester 1

Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind's modest position therein. To what degree is our happiness determined by stars? Echoes from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe - distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.

Mechanics 122 (SWK 122)

	- /
Module credits	16.00
Service modules	Faculty of Natural and Agricultural Sciences
Prerequisites	WTW 158
Contact time	2 tutorials per week, 4 lectures per week
Language of tuition	Separate classes for Afrikaans and English
Department	Civil Engineering

Period of presentation Semester 2

Module content

Equivalent force systems, resultants. Newton's laws, units. Forces acting on particles. Rigid bodies: principle of transmissibility, resultant of parallel forces. Vector moments and scalar moments. Relationship between scalar-and vector moments. Couples. Equivalent force systems on rigid bodies. Resultants of forces on rigid bodies. Equilibrium in two and three dimensions. Hooke's law. Trusses and frameworks. Centroids and second moments of area. Beams: distributed forces, shear force, bending moment, method of sections, relationship between load, shear force and bending moment.

Curriculum: Year 2

Minimum credits: 144

Minimum credits:

Core = 88Elective = 56

Additional information:

Electives for the first to third year can be chosen from modules in the following departments: Geography, Geoinformatics and Meteorology, Geology, Plant Production and Soil Science, Chemistry, Plant Science, Mathematics and Applied Mathematics, Physics, Computer Science.

Core modules

Geographic data analysis 220 (GIS 220)

Module credits	14.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GMC 110 and (STK 110 OR BME 120)
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Daried of presentation	Competer 2

Period of presentation Semester 2

Module content

The nature of geographical data and measurement. Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis.

Remote sensing 220 (GMA 220)

Module credits	14.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	GMC 110
Contact time	1 practical per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 1

This module will provide a thorough introduction to the basic scientific principles involved in remote sensing, and some of the applications to studies of the Earth's surface. This includes examining the basic physics of electromagnetic radiation and the complex interactions of radiation with the surface and atmosphere (i.e. spectral signatures). In addition, basic concepts of photogrammetry will be discussed. The theoretical background laid out in the first half of the module will provide the tools for examining various remote sensing applications using data obtained in different parts of the electromagnetic spectrum. The applications will include uses of satellite remote sensing data for mapping and monitoring vegetation, soils and minerals, snow and ice, water resources and quality, and urban landscapes. The laboratory section will include hands-on experience with various satellite image data sets.

Programming in meteorology 254 (WKD 254)

Module credits	12.00
Prerequisites	WKD 261 and WKD 263. Limited to BSc (Meteorology) students or TDH
Contact time	1 practical per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Semester 2

Module content

Meteorological data acquisition. Manipulation of multidimensional meteorological data sets. Spatial representation and interpretation of weather data. Introduction to statistical and numerical methods. Introduction to atmospheric cloud models.

Physical meteorology 261 (WKD 261)

Module credits	12.00
Prerequisites	WTW 114
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 1

Module content

Conservative forces and conservation laws. Basic thermodynamic laws for dry and humid air. The equation of state. Adiabatic processes and temperature lapse rates. The Clausuis-Claperon equation. Calculation of the wet adiabat.

Introduction to dynamic meteorology 263 (WKD 263)

Module credits	12.00
Prerequisites	WTW 126 and WTW 128 (students should simultaneously be enrolled for WTW 218).

Contact time 1 tutorial per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 2

Module content

Vector algebra, curl of a vector, total and partial derivatives, second law of motion. Spherical coordinates Acceleration in rotating co-ordinates, fundamental forces, momentum equation. Three dimensional flow balance, conservation of mass, heat equation, thermodynamic energy equation. Introduction to finite difference methods. Numerical estimation of the geostrophic wind, vorticity and divergence. Advection of temperature. Development of a two-dimensional temperature advection model.

Calculus 218 (WTW 218)

Module credits 12.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Economic and Management Sciences

Prerequisites WTW 114 and WTW 124

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.

Vector analysis 248 (WTW 248)

Module credits 12.00

Service modules Faculty of Education

Prerequisites WTW 218

Contact time 1 discussion class per week, 2 lectures per week

Language of tuition Afrikaans and English are used in one class

Department Mathematics and Applied Mathematics

Period of presentation Semester 2

Module content

Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.

Elective modules

Process geomorphology 252 (GGY 252)

Module credits 12.00

Service modules Faculty of Education

Faculty of Humanities

Prerequisites GGY 166 or GLY 155

Contact time 2 practicals per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 2

Module content

Physical processes that influence the earth's surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and fluvial processes. Practical laboratory exercises are based on the themes covered in the module theory component.

City structure, environment and society 266 (GGY 266)

Module credits 24.00

Service modules

Faculty of Education
Faculty of Humanities

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 2

Module content

An urbanising world. Urban structure and land use. Urban processes. The urban environment. Social structure and change in cities. Living in the city. Economy, society and politics in the city. Third-world cities and South African cities. Urban futures.

Introductory geographic information systems 283 (GGY 283)

Module credits 14.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Humanities

Prerequisites GMC 110

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 1

Module content

Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies. This module provides the foundations for more advanced GIS and Geoinformatics topics.

Introductory soil science 250 (GKD 250)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites CMY 117 GS or TDH

Contact time 1 practical per week, 3 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 1

Module content

Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

Remote sensing 220 (GMA 220)

Module credits 14.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GMC 110

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 1

This module will provide a thorough introduction to the basic scientific principles involved in remote sensing, and some of the applications to studies of the Earth's surface. This includes examining the basic physics of electromagnetic radiation and the complex interactions of radiation with the surface and atmosphere (i.e. spectral signatures). In addition, basic concepts of photogrammetry will be discussed. The theoretical background laid out in the first half of the module will provide the tools for examining various remote sensing applications using data obtained in different parts of the electromagnetic spectrum. The applications will include uses of satellite remote sensing data for mapping and monitoring vegetation, soils and minerals, snow and ice, water resources and quality, and urban landscapes. The laboratory section will include hands-on experience with various satellite image data sets.

Linear algebra 211 (WTW 211)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 124
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English

Period of presentation Semester 1

Module content

Department

This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.

Mathematics and Applied Mathematics

Analysis 220 (WTW 220)

Module credits	12.00
Service modules	Faculty of Education Faculty of Economic and Management Sciences
Prerequisites	WTW 114 and WTW 124, WTW 211 and WTW 218
Contact time	1 tutorial per week, 2 lectures per week
Language of tuition	Module is presented in English
Department	Mathematics and Applied Mathematics
Period of presentation	Semester 2

Module content

Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.

Differential equations 286 (WTW 286)

Module credits 12.00

Service modules Faculty of Economic and Management Sciences

Prerequisites WTW 114, WTW 124 and WTW 162

Contact time 1 tutorial per week, 2 lectures per week

Language of tuition Module is presented in English

Department Mathematics and Applied Mathematics

Period of presentation Semester 1

Module content

*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286 Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems. Qualitative analysis of linear systems.

Curriculum: Final year

Minimum credits: 120

Minimum credits:

Core = 90Elective = 30

Additional information:

Electives for the first to third year can be chosen from modules in the following departments: Geography, Geoinformatics and Meteorology, Geology, Plant Production and Soil Science, Chemistry, Plant Science, Mathematics and Applied Mathematics, Physics, Computer Science.

Core modules

Human environmental interactions 301 (ENV 301)

Module credits	18.00
Service modules	Faculty of Education Faculty of Humanities
Prerequisites	No prerequisites.
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology

Period of presentation Quarter 2

Module content

The module focuses on contemporary environmental issues in southern Africa. Recent and future impacts of human pressures on natural resources, the state of the environment in South Africa, management of critical resources, population trends, biodiversity loss, pollution, water scarcity, desertification, climate change, waste accumulation and management, environmental management tools, environmental education and environmental management legislation.

Atmospheric vorticity and divergence 352 (WKD 352)

Module credits	18.00
Prerequisites	WKD 263 GS and WTW 248 GS
Contact time	1 tutorial per week, 4 lectures per week
Language of tuition	Module is presented in English
Department	Geography Geoinformatics and Meteorology
Period of presentation	Quarter 3

Module content

Scale analyses and simplification of the basic equations. The geostrophic, thermal and gradient wind. The vorticity equation and divergence.

Quasi-geostrophic analysis 361 (WKD 361)

Module credits 18.00

Prerequisites WKD 352 GS and WKD 254

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 4

Module content

Tendency and Omega equations. Model of a boroclinic system. Introduction to numerical models. Application in meteorological display and analysis software.

Fundamentals of weather forecasting 366 (WKD 366)

Module credits 36.00

Prerequisites WKD 155, WKD 261, WKD 254 (students should simultaneously be enrolled for

WKD 361)

Contact time 1 practical per week, 4 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 2

Module content

Meterological observations data codes. Weather applications software and computing environments of meteorological analysis and weather forecasting techniques. Applications of remote sensing in weather forecasting. Aaerological diagrams. Applications of numerical weather prediction, and types of weather forecasts. Integration of information to describe the current state of the atmosphere and to predict a future state of the atmosphere.

Elective modules

Sustainable development 356 (GGY 356)

Module credits 18.00

Service modules

Faculty of Education
Faculty of Humanities

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 1

The module conceptually integrates environmental, economic, and social components of sustainable development. Other topics covered include changing perceptions on development and environment, development paradigms, challenges of sustainable development, actors and actions in sustainable development, rural and urban livelihoods, and a Third World assessment of sustainable development in the developing world.

Development frameworks 366 (GGY 366)

Module credits 18.00

Service modules Faculty of Education

Faculty of Humanities

Prerequisites No prerequisites.

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Quarter 3

Module content

Classic development frameworks. Spatial development history and legacy in South Africa. Overview of contemporary environmental legislation in South Africa. Rural development strategy. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks.

Geographic information systems 310 (GIS 310)

Module credits 22.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GGY 283

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 1

Module content

Advanced theory and practice of Geographic Information Systems; GIS applications; design and implementation of GIS applications. A project or assignments of at least 64 notional hours.

Spatial analysis 320 (GIS 320)

Module credits 22.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GIS 310 or TDH

Contact time 1 practical per week, 3 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 2

Module content

Construction of Raster Geovisualisations, spatial model construction and use, multi-criteria decision analysis. Factor analysis: Principle component analysis. Geostatistics: Spatial dependence modelling, ordinary kriging. Markov chains and cellular Automata, combined models.

Soil chemistry 320 (GKD 320)

Module credits 14.00

Prerequisites GKD 250

Contact time 1 practical per week, 2 lectures per week

Language of tuition Separate classes for Afrikaans and English

Department Department of Plant and Soil Sciences

Period of presentation Semester 2

Module content

The more exact chemistry of soils systematically explained by understanding the particular chemical principles. Charge origin. Chemical equilibriums. Manifestations of sorption. Ion exchange. Acidic soils, saline soils and the organic fraction of soil. The chemistry of the important plant nutrient elements P, K and N is explained.

Remote sensing 320 (GMA 320)

Module credits 22.00

Prerequisites GMA 220

Contact time 1 practical per week, 2 lectures per week

Language of tuition Module is presented in English

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 2

Module content

This module aims to provide students with a working knowledge and skills to learn methods and techniques for collecting, processing and analysing remotely sensed data. Throughout the module, emphasis will be placed on image processing, image analysis, image classification, remote sensing and applications of remote sensing in geographical analysis and environmental monitoring. The module is composed of lectures, readings, laboratory exercises and research tasks. A project or assignments of at least 64 notional hours.

Geometrical and space geodesy 310 (GMC 310)

Module credits 22.00

Prerequisites GMC 110 and WTW 114/WTW 134

Contact time 1 practical per week, 2 lectures per week

Language of tuition Afrikaans and English are used in one class

Department Geography Geoinformatics and Meteorology

Period of presentation Semester 1

Module content

Spherical trigonometry. Geometrical Geodesy: Datum surfaces and coordinate systems in Geodesy, Calculations on the ellipsoid, Datum transformations. Map projections: Projection principles, distortion determination, construction of conformal, equivalent and equidistant projections, the Transverse Mercator projection and UTM projection of an ellipsoidal earth, projection transformations. Space Geodesy: Time systems, Celestial and observer coordinate systems, Global Navigation Satellite Systems (GNSS), Satellite orbits and orbital parameters, 3¬ D positioning. A project or assignments of at least 64 notional hours.

Principles of veld management 310 (WDE 310)

Module credits 12.00

Prerequisites No prerequisites.

Contact time 2 lectures per week, fortnightly practicals

Language of tuition Afrikaans and English are used in one class

Department Department of Plant and Soil Sciences

Period of presentation Semester 1

Module content

The influence of biotic and abiotic factors on the productivity of different strata and components of natural pastures. This will enable the student to advise users, with the necessary motivation, on the appropriate use of these strata and components and will form a basis for further research on this system. The principles of veld management s and the influence of management practices on sustainable animal production from natural pastures. This will enable the student to advise users on veld management and veld management principles. It will also form a basis for further research on veld management.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations** (**G Regulations**) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.