Macromolecules of life: Structure-function and Bioinformatics 356

Module code BCM 356
Qualification Undergraduate
Faculty Faculty of Natural and Agricultural Sciences
Module content

Perspectives on the flow of information from nucleic acids to proteins, the structure and functions of nucleic acids and proteins and their organisation into hierarchical, interdependent systems. Nucleic acid structure as observed in fibres and crystals as well as global DNA and RNA analyses (methods and bioinformatic analyses). Biochemical analyses of nucleotides. DNA-DNA recognition: non-standard and higher order DNA structures. The RNA structural world, RNAi, miRNA and ribosomes. Cellular functions of coding and non-coding nucleic acids. Principles of small molecule-DNA recognition. Principles of protein-DNA recognition and interactions. Bioinformatics predictions of protein and small molecule DNA interactions. Chemical reactivity of amino acids. Domain structures of proteins and Ramachandran plots. Protein folding, sequence motifs and domains, higher order and supramolecular structure, self-assembly, conjugated proteins, post-translational modifications, conjugated proteins and bioinformatics predictions. Principles of protein function and protein structure relationships. Protein-ligand and protein-protein interactions. Protein aggregation in disease. Examples of the diverse functions of proteins and peptides, including enzymes, hormones, neurotransmitters, antibodies, receptors, transport and membrane proteins. Global analysis of proteins through proteomics. Basic principles of nuclear magnetic resonance, mass spectrometry and X-ray crystallography. Protein purification and characterization including, pI, molecular mass, amino acid composition and sequence. Practical training will include interactive computer-guided demonstrations of protein analysis, hands-on practical sessions for nucleic acid purification and chemical structure characterisation, protein expression and purification (including SDS-PAGE), protein sequence analysis including mass spectrometry, protein structure analysis by 3D protein modelling and protein folding (Bioinformatics).

Module credits 18.00
Prerequisites BCM 251 and BCM 252
Contact time 180 minute practical per week, 2 lectures per week
Language of tuition Afrikaans and English are used in one class
Department Biochemistry
Period of presentation Semester 1

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.

Copyright © University of Pretoria 2024. All rights reserved.

FAQ's Email Us Virtual Campus Share Cookie Preferences