Code | Faculty |
---|---|
02133203 | Faculty of Natural and Agricultural Sciences |
Credits | Duration |
---|---|
Duration of study: 3 years | Total credits: 428 |
The following persons will be considered for admission: a candidate who is in possession of a certificate that is deemed by the University to be equivalent to the required Grade 12 certificate with university endorsement; a candidate who is a graduate from another tertiary institution or has been granted the status of a graduate of such an institution; and a candidate who is a graduate of another faculty at the University of Pretoria.
Life Orientation is excluded in the calculation of the Admission Point Score (APS).
Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.
Minimum requirements | ||||||||||||
Achievement level | ||||||||||||
Afrikaans or English | Mathematics | Physical Science | APS | |||||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | |
5 | 3 | C | C | 5 | 3 | C | C | 5 | 3 | C | C | 32 |
BSc - Extended programme for the Physical Sciences:
Minimum requirements | |||||||||||||
Achievement level | |||||||||||||
| Afrikaans or English | Mathematics | Physical Science | APS | |||||||||
NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | NSC/IEB | HIGCSE | AS-Level | A-Level | ||
BSc - Extended programme for the Physical Sciences | 4 | 3 | D | D | 4 | 3 | D | D | 4 | 3 | D | D | 26 |
A student must pass all the minimum prescribed and elective module credits as set out at the end of each year within a programme as well as the total required credits to comply with the particular degree programme. Please refer to the curricula of the respective programmes. At least 144 credits must be obtained at 300-/400-level, or otherwise as indicated by curriculum. The minimum module credits needed to comply with degree requirements is set out at the end of each study programme. Subject to the programmes as indicated a maximum of 150 credits will be recognised at 100-level. A student may, in consultation with the Head of Department and subject to the permission by the Dean, select or replace prescribed module credits not indicated in BSc three-year study programmes to the equivalent of a maximum of 36 module credits.
It is important that the total number of prescribed module credits is completed during the course of the study programme. The Dean may, on the recommendation of the Head of Department, approve deviations in this regard. Subject to the programmes as indicated in the respective curricula, a student may not register for more than 75 module credits per semester at first-year level subject to permission by the Dean. A student may be permitted to register for up to 80 module credits in a the first semester during the first year provided that he or she obtained a final mark of no less than 70% for grade 12 Mathematics and achieved an APS of 34 or more in the NSC.
Students who are already in possession of a bachelor’s degree, will not receive credit for modules of which the content overlap with modules from the degree that was already conferred. Credits will not be considered for more than half the credits passed previously for an uncompleted degree. No credits at the final-year or 300- and 400-level will be granted.
The Dean may, on the recommendation of the programme manager, approve deviations with regard to the composition of the study programme.
Please note: Where elective modules are not specified, these may be chosen from any modules appearing in the list of modules.
It remains the student’s responsibility to acertain, prior to registration, whether they comply with the prerequisites of the modules they want to register for.
The prerequisites are listed in the Alphabetical list of modules.
General promotion requirements in the faculty
All students whose academic progress is not acceptable can be suspended from further studies.
Minimum credits: 140
Minimum credits:
Fundamental = 12
Core = 64
Electives = 64
Additional information:
Students who do not qualify for AIM 102 must register for AIM 111 and AIM 121.
CMY 117,127 and WTW 162 are recommended. Electives can be chosen from eg Mathematics, Meteorology, Geology, Geography, IT, Mathematical Statistics, Computer Science, Biochemistry, Zoology etc.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.
Module content:
Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.
Module content:
Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.
Module content:
*This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218 and WTW 220). Students will not be credited for more than one of the following modules for their degree: WTW 114, WTW 158, WTW 134, WTW 165.
Functions, limits and continuity. Differential calculus of single variable functions, rate of change, graph sketching, applications. The mean value theorem, the rule of L'Hospital. Definite and indefinite integrals, evaluating definite integrals using anti-derivatives, the substitution rule.
Module content:
SI-units. Significant figures. Waves: intensity, superposition, interference, standing waves, resonance, beats, Doppler. Geometrical optics: Reflection, refraction, mirrors, thin lenses, instruments. Physical optics: Young-interference, coherence, diffraction, polarisation. Hydrostatics and dynamics: density, pressure, Archimedes’ principle, continuity, Bernoulli. Heat: temperature, specific heat, expansion, heat transfer. Vectors. Kinematics of a point: Relative, projectile, and circular motion. Dynamics: Newton’s laws, friction. Work: point masses, gasses (ideal gas law), gravitation, spring, power. Kinetic energy: Conservative forces, gravitation, spring. Conservation of energy. Conservation of momentum. Impulse and collisions. System of particles: Centre of mass, Newton’s laws. Rotation: torque, conservation of angular momentum, equilibrium, centre of gravity.
Module content:
Simple harmonic motion and pendulums. Coulomb’s law. Electric field: dipoles, Gauss’ law.Electric potential. Capacitance. Electric currents: resistance, resistivity, Ohm’s law, energy, power, emf, RC-circuits. Magnetic Field: Hall-effect, Bio-Savart. Faraday’s and Lenz’s laws. Oscillations: LR-circuits. Alternating current: RLC-circuits, power, transformers. Introductory concepts to modern physics. Nuclear physics: Radioactivity.
Module content:
*Students will not be credited for more than one of the following modules for their degree:
WTW 124, WTW 146, WTW 148 and WTW 164. This module serves as preparation for students majoring in Mathematics (including all students who intend to enrol for WTW 218, WTW 211 and WTW 220).
The vector space Rn, vector algebra with applications to lines and planes, matrix algebra, systems of linear equations, determinants. Complex numbers and factorisation of polynomials. Integration techniques and applications of integration. The formal definition of a limit. The fundamental theorem of Calculus and applications. Vector functions, polar curves and quadratic curves.
Module content:
General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of inorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.
Module content:
Theory: General physical-analytical chemistry: Chemical equilibrium, acids and bases, buffers, solubility equilibrium, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and aminoacids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.
Module content:
Students from all faculties are welcome to join us in our exploration of the universe from an earth-bound perspective. We reflect on the whole universe from the sub microscopic to the vast macroscopic and mankind’s modest position therein. To what degree is our happiness determined by stars? Echoes from ancient firmaments - the astronomy of old civilisations. The universe is born with a bang. Stars, milky ways and planets are formed. Life is breathed into the landscape on earth, but is there life elsewhere? The architecture of the universe – distance measurements, structure of our solar system and systems of stars. How does it look like on neighbouring planets? Comets and meteorites. Life cycles of stars. Spectacular exploding stars! Exotica like pulsars and black holes.
Module content:
Propositional logic: truth tables, logical equivalence, implication, arguments. Mathematical induction and well-ordering principle. Introduction to set theory. Counting techniques: elementary probability, multiplication and addition rules, permutations and combinations, binomial theorem, inclusion-exclusion rule.
Module content:
Non-linear equations, numerical integration, initial value problems for differential equations, systems of linear equations. Algorithms for elementary numerical techniques are derived and implemented in computer programmes. Error estimates and convergence results are treated.
Module content:
Introduction to the modelling of dynamical processes using difference equations. Curve fitting. Introduction to linear programming. Matlab programming. Applications to real-life situations in, among others, finance, economics and ecology.
Module content:
*Students will not be credited for more than one of the following modules for their degree: WTW 162 and WTW 264.
Introduction to the modelling of dynamical processes using elementary differential equations. Solution methods for first order differential equations and analysis of properties of solutions (graphs). Applications to real life situations.
Minimum credits: 144
Minimum credits:
Core = 96
Elective = 48
Additional information:
Electives can be chosen from eg Mathematics, Meteorology, Geology, Geography, IT and Mathematical Statistics, etc. Students interested in further studies in astronomy are advised to consider the module PHY 210 Astronomy for physicists as an elective.
Module content:
Classical mechanics (28 lectures)
Fundamental concepts, energy and angular momentum, calculus of variations and Lagrangian mechanics, conservative central forces and two body problems, scattering, mechanics in rotating reference frames, many body systems.
Physical Optics (14 lectures)
Maxwell’s equations, wave equation and plane wave solution, coherence, interference,
diffraction, polarisation.
Physics of Materials (14 lectures)
Classification of materials. Atomic bonding. Crystallography. Defects. Material strength.
Phase diagram's, Ceramics. Polymers. Composites. Fracture. Electrical and
magnetic properties. Semiconductors. Smart materials Nanotechnology.
Experiments (14 sessions)
Module content:
This is an introduction to linear algebra on Rn. Matrices and linear equations, linear combinations and spans, linear independence, subspaces, basis and dimension, eigenvalues, eigenvectors, similarity and diagonalisation of matrices, linear transformations.
Module content:
Calculus of multivariable functions, directional derivatives. Extrema and Lagrange multipliers. Multiple integrals, polar, cylindrical and spherical coordinates.
Module content:
Properties of real numbers. Analysis of sequences and series of real numbers. Power series and theorems of convergence. The Bolzano-Weierstrass theorem. The intermediate value theorem and analysis of real-valued functions on an interval. The Riemann integral: Existence and properties of the interval.
Module content:
Vibrating systems and waves (14 lectures)
Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.
Modern physics (30 lectures)
Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.
Heat and thermodynamics (12 lectures)
Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.
Modelling and simulation (7 practical sessions)
Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.
Error Analysis (7 practical sessions)
Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.
Module content:
Vectors and geometry. Calculus of vector functions with applications to differential geometry, kinematics and dynamics. Vector analysis, including vector fields, line integrals of scalar and vector fields, conservative vector fields, surfaces and surface integrals, the Theorems of Green, Gauss and Stokes with applications.
Module content:
Theory: Classical chemical thermodynamics, gases, first and second law and applications, physical changes of pure materials and simple compounds. Phase rule: Chemical reactions, chemical kinetics, rates of reactions.
Module content:
Theory: Statistical evaluation of data, gravimetric analysis, aqueous solution chemistry, chemical equilibrium, precipitation-, neutralisation- and complex formation titrations, redox titrations, potentiometric methods, introduction to electrochemistry.Module content:
Theory: Resonance, conjugation and aromaticity. Acidity and basicity. Introduction to ^{13}C NMR spectroscopy. Electrophilic addition: alkenes. Nucleophilic substitution, elimination, addition: alkyl halides, alcohols, ethers, epoxides, carbonyl compounds: ketones, aldehydes, carboxylic acids and their derivatives.
Module content:
Theory: Atomic structure, structure of solids (ionic model). Coordination chemistry of transition metals: Oxidation states of transition metals, ligands, stereochemistry, crystal field theory, consequences of d-orbital splitting, chemistry of the main group elements, electrochemical properties of transition metals in aqueous solution, industrial applications of transition metals.Fundamentals of spectroscopy and introduction to IR spectroscopy.
Module content:
Physical processes that influence the earth’s surface and management. Specific processes and their interaction in themes such as weathering; soil erosion; slope, mass movement and fluvial processes. Practical laboratory exercises are based on the themes covered in the module theory component.
Module content:
*This module is for Architecture and Landscape Architecture students only.
The theory component covers geomorphological aspects of the built environment including landscape identification; weathering or deterioration of natural stone and application to design and preservation of buildings and monuments; slope hydrology and stability conditions; soil erosion processes and construction impacts; drainage modification in urban areas; wetland identification, human impacts and rehabilitation; recreational impacts and management. In addition to the theory a field-based project is undertaken.
Module content:
The nature of geographical data and measurement.Application of statistics in the geographical domain. Probability, probability distributions and densities, expected values and variances, Central Limit theorem. Sampling techniques. Exploratory data analysis, descriptive statistics, statistical estimation, hypothesis testing, correlation analysis and regression analysis.
Module content:
Conservative forces and conservation laws. Basic thermodynamic laws for dry and humid air. The equation of state. Adiabatic processes and temperature lapse rates. The Clausuis-Claperon equation. Calculation of the wet adiabat.
Module content:
Abstract vector spaces, change of basis, matrix representation of linear transformations, orthogonality, diagonalisability of symmetric matrices, some applications.Module content:
Theory and solution methods for linear differential equations as well as for systems of linear differential equations. Theory and solution methods for first order non-linear differential equations. The Laplace transform with application to differential equations. Application of differential equations to modelling problems.
Module content:
Setting up and solving recurrence relations. Equivalence and partial order relations. Graphs: paths, cycles, trees, isomorphism. Graph algorithms: Kruskal, Prim, Fleury. Finite state automata.
Module content:
*Students will not be credited for more than one of the modules for their degree: WTW 264, WTW 286
Theory and solution methods for ordinary differential equations and initial value problems: separable and linear first-order equations, linear equations of higher order, systems of linear equations. Application to mathematical models. Numerical methods applied to nonlinear systems.Qualitative analysis of linear systems.
Module content:
An urbanising world. Urban structure and land use. Urban processes. The urban environment. Social structure and change in cities. Living in the city. Economy, society and politics in the city. Third-world cities and South African cities. Urban futures.
Module content:
Vector algebra, curl of a vector, total and partial derivatives, second law of motion. Spherical coordinates Acceleration in rotating co-ordinates, fundamental forces, momentum equation. Three dimensional flow balance, conservation of mass, heat equation, thermodynamic energy equation. Introduction to finite difference methods. Numerical estimation of the geostrophic wind, vorticity and divergence. Advection of temperature. Development of a two-dimensional temperature advection model.
Minimum credits: 144
Minimum credits:
Core = 72
Elective = 72
Additional information:
PHY 353 and/or PHY 363 can be chosen as elective modules. Students interested in further studies in astronomy or high energy physics are advised to consider PHY 300 Observational astronomy and PHY 310 Particle and astroparticle physics as electives.
Module content:
Statistical mechanics (28 lectures)
Isolated systems in thermodynamical equilibrium. Systems in equilibrium with a heat bath: the canonical ensemble, Gibbs' entropic formula, classical statistical mechanics, energy equipartition theorem, thermodynamic potentials, paramagnetism.
The classical limit of perfect gases: non-distinguishable character of quantum particles, the equation of state of the classical ideal gas. Quantum perfect gases: Black body radiation, the grand canonical ensemble, Fermi-Dirac distribution, the free electron gas in metals, the Bose-Einstein distribution, Bose-Einstein condensation.
Solid state physics (28 lectures)
Crystal structures, the reciprocal lattice, x-ray diffraction, lattice vibration, the Debye model, characteristics of solids, the free electron model, Pauli paramagnetism, electronic heat capacity, the relaxation time, electrical conduction, the classical Hall effect, thermal conduction in metals, failures of the free electron model, the independent electron model, band theory of solids.
Computational Physics and modelling. Assessment will be done through a portfolio of project reports. The topics for the projects will be selected from various sub-disciplines of Physics.
Module content:
Electronics (14 lectures)
Thévenin and Norton equivalent circuits, superposition principle, RC, LC and LRC circuits. Semiconductor diode. Bipolar transistor. Operational amplifiers. Computer controlled instrumentation.
Electromagnetism (21 lectures)
Electrostatics: Coulomb’s law, divergence and curl of E, Gauss’ law, Laplace’s equation, image charge problems, multipole expansion.
Magnetostatics: Lorenz force, Biot-Savart law, divergence and curl of magnetic field strength, Ampère’s law, magnetic vector potential, multipole expansion, boundary conditions.
Electrodynamics: Electromotive force, electromagnetic induction, Maxwell’s equations, wave equation.
Electric and magnetic fields in matter: Polarisation, electric displacement and Gauss’s law in dielectrics, linear dielectrics. Magnetisation (diamagnets, paramagnets, ferromagnets), auxiliary field H and Ampère’s law in magnetised materials, linear and nonlinear media.
Quantum mechanics (28 lectures)
The Schrödinger equation, the statistical interpretation of the wave function, momentum, the uncertainty principle, the time-independent Schrödinger equation, stationary states, the infinite square well potential, the harmonic oscillator, the free particle, the Delta-Function potential, the finite square well potential, Hilbert spaces, observables, eigen functions of a Hermitian operator, Dirac notation, the Schrödinger equation in spherical coordinates, the hydrogen atom, angular momentum spin.
Module content:
Theory: Molecular quantum mechanics. Introduction: Shortcomings of classical physics, dynamics of microscopic systems, quantum mechanical principles, translational, vibrational and rotational movement. Atomic structure and spectra: Atomic hydrogen, multiple electron systems, spectra of complex atoms, molecular structure, the hydrogen molecule ion, diatomic and polyatomic molecules, structure and properties of molecules. Molecules in motion: Viscosity, diffusion, mobility. Surface chemistry: Physisorption and chemisorption, adsorption isotherms, surface tension, heterogeneous catalytic rate reactions, capillarity.
Module content:
Theory: Separation methods: Extraction, multiple extraction, chromatographic systems. Spectroscopy: Construction of instruments, atomic absorption and atomic emission spectrometry, surface analysis techniques. Mass spectrometry. Instrumental electrochemistry.
Module content:
Theory: NMR spectroscopy: applications. Aromatic chemistry, Synthetic methodology in organic chemistry. Carbon-carbon bond formation: alkylation at nucleophilic carbon sites, aldol and related condensations, Wittig and related reactions, acylation of carbanions (Claisen condensation).
Module content:
Theory: Structure and bonding in inorganic chemistry. Molecular orbital approach, diatomic and polyatomic molecules, three-centre bonds, metal-metal bonds, transition metal complexes, magnetic properties, electronic spectra, reactivity and reaction mechanisms, reaction types, acid-base concepts, non-aqueous solvents, special topics.
Module content:
*Cannot be used as substitute for other Physics 300 modules to obtain admission to the BSc(Hons) in Physics.
A student is required to complete a project under guidance of the lecturer. The nature of the project is determined jointly by the student, lecturer and the head of department.
Module content:
*Cannot be used as substitute for other Physics 300 modules to obtain admission to the BSc(Hons) in Physics
A student is required to complete a project under guidance of the lecturer. The nature of the project is determined jointly by the student, lecturer and the head of department.
Module content:
Scale analyses and simplification of the basic equations. The geostrophic, thermal and gradient wind. The vorticity equation and divergence.
Module content:
Tendency and Omega equations. Model of a boroclinic system. Introduction to numerical models. Application in meteorological display and analysis software.
Module content:
Topology of finite dimensional spaces: Open and closed sets, compactness, connectedness and completeness. Theorems of Bolzano-Weierstrass and Heine-Borel. Properties of continuous functions and applications. Integration theory for functions of one real variable. Sequences of functions.
Module content:
Series of functions, power series and Taylor series. Complex functions, Cauchy- Riemann equations, Cauchy's theorem and integral formulas. Laurent series, residue theorem and calculation of real integrals using residues.
Module content:
Matrix exponential function: homogeneous and non-homogeneous linear systems of differential equations. Qualitative analysis of systems: phase portraits, stability, linearisation, energy method and Liapunov's method. Introduction to chaotic systems. Application to real life problems.
Module content:
Direct methods for the numerical solution of systems of linear equations, pivoting strategies. Iterative methods for solving systems of linear equations and eigenvalue problems. Iterative methods for solving systems of nonlinear equations. Introduction to optimization. Algorithms for the considered numerical methods are derived and implemented in computer programmes. Complexity of computation is investigated. Error estimates and convergence results are proved.
Module content:
Conservation laws and modelling. Fourier analysis. Heat equation, wave equation and Laplace's equation. Solution methods including Fourier series. Energy and other qualitative methods.
Module content:
Kinematics of a continuum: Configurations, spatial and material description of motion. Conservation laws. Analysis of stress, strain and rate of deformation. Linear constitutive equations. Applications: Vibration of beams, equilibrium problems in elasticity and special cases of fluid motion.
Module content:
Axiomatic development of neutral, Euclidean and hyperbolic geometry. Using models of geometries to show that the parallel postulate is independent of the other postulates of Euclid.
Module content:
The module conceptually integrates environmental, economic, and social components of sustainable development. Other topics covered include changing perceptions on development and environment, development paradigms, challenges of sustainable development, actors and actions in sustainable development, rural and urban livelihoods, and a Third World assessment of sustainable development in the developing world.
Module content:
Classic development frameworks. Spatial development history and legacy in South Africa. Overview of contemporary environmental legislation in South Africa. Rural development strategy. Rural and agricultural reconstruction. Land reform. Urban development and strategy. Urban spatial reconstruction. National spatial development frameworks.
Module content:
The module focuses on contemporary environmental issues in southern Africa. Recent and future impacts of human pressures on natural resources, the state of the environment in South Africa, management of critical resources, population trends, biodiversity loss, pollution, water scarcity, desertification, climate change, waste accumulation and management, environmental management tools, environmental education and environmental management legislation.
Module content:
Meterological observations data codes. Weather applications software and computing environments of meteorological analysis and weather forecasting techniques. Applications of remote sensing in weather forecasting. Aaerological diagrams. Applications of numerical weather prediction, and types of weather forecasts. Integration of information to describe the current state of the atmosphere and to predict a future state of the atmosphere.
Module content:
Structure of the universe, navigation of the sky, spherical geometry, optical, radio and high energy physics and sources, instruments, practical observational skills, data recording, analysis, interpretation (signal and image processing, noise, calibration, error analysis). Project: A selected project in either optical or radio astronomy, resulting in a formal report and a presentation.
Module content:
Relativistic kinematics, fundamentals of elementary particle physics, the four forces of nature and the Standard Model, beyond the Standard Model, early universe cosmology (inflation, baryogenesis), the Cosmic Microwave Background, high-energy astronomy (cosmic rays, gamma rays and neutrinos), gravitational waves, dark matter (evidence, candidates, detection), dark energy and the Standard Cosmological Model.
Copyright © University of Pretoria 2023. All rights reserved.
COVID-19 Corona Virus South African Resource Portal
To contact the University during the COVID-19 lockdown, please send an email to [email protected]
Get Social With Us
Download the UP Mobile App