

University of Pretoria Yearbook 2016

BScAgric Plant Pathology (03130321)

Duration of study 4 years

Total credits 589

Admission requirements

- In order to register NSC/IEB/Cambridge candidates must comply with the minimum requirements for degree studies as well as the minimum requirements for the relevant study programme.
- Life Orientation is excluded in the calculation of the Admission Point Score (APS).
- Grade 11 results are used for the provisional admission of prospective students. Final admission is based on the Grade 12 results.

Minimum requirements for 2016												
Achievement level												
Afrikaans or English				Mathen	natics			Physical Sciences			APS	
NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	NSC/IEB	HIGCSE	AS-Level	A-Level	APS
5	3	С	С	5	3	С	С	5	3	С	С	30

Candidates who do not comply with the minimum admission requirements may be considered for admission to the BScAgric or the BSc (Four-year Programme) based on the results of the NBT. Please note that students who are placed in the BSc (Four-year Programme) will take a minimum of five years to complete the BSc Agric study programme.

Other programme-specific information

Students may enrol for AIM 111 and AIM 121 instead of AIM 101 (the same content presented over 2 semesters).

Electives are chosen as follows:

Third year - 12 credits

Compilation of curriculum

Students must register for elective modules in consultation with the head of department who must ensure that the modules do not clash on the set timetable.

The Dean may, in exceptional cases and on recommendation of the head of department, approve deviations from the prescribed curriculum.

Promotion to next study year

A student will be promoted to the following year of study if he or she passed 100 credits of the prescribed credits for a year of study, unless the Dean on the recommendation of the head of department decides otherwise. A student who does not comply with the requirements for promotion to the following year of study, retains the credit for the modules already passed and may be admitted by the Dean, on recommendation of the head of department, to modules of the following year of study to a maximum of 48 credits, provided that it will fit in with both the lecture and examination timetable.

Pass with distinction

The BScAgric degree is conferred with distinction if a student obtains a weighted average of at least 75% in the modules of the major subjects in the third and the fourth year of study, with a weighted average of at least 65% in the other modules of the third and the fourth year of study.

Curriculum: Year 1

Minimum credits: 140

Fundamental modules

Academic information management 111 (AIM 111)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Service modules Faculty of Humanities

Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Prerequisites No prerequisites.

Contact time MAMELODI, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 1

Module content

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology.

Academic information management 121 (AIM 121)

Module credits 4.00

Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week, MAMELODI

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 2

Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Language and study skills 110 (LST 110)

Module credits 6.00

Service modules Faculty of Natural and Agricultural Sciences

Faculty of Veterinary Science

Prerequisites No prerequisites.

Contact time 2 lectures per week

Language of tuition English

Academic organisation Unit for Academic Literacy

Period of presentation Semester 1

Module content

The module aims to equip students with the ability to cope with the reading and writing demands of scientific disciplines.

Academic orientation 102 (UPO 102)

Module credits 0.00

Language of tuition Double Medium

Academic organisation Natural + Agric Sciences Dean

Period of presentation Year

Academic information management 102 (AIM 102)

Module credits 6.00

Faculty of Education

Faculty of Economic and Management Sciences

Faculty of Humanities

Service modules Faculty of Law

Faculty of Health Sciences

Faculty of Natural and Agricultural Sciences

Faculty of Theology

Faculty of Veterinary Science

Contact time 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Information Science

Period of presentation Semester 2

Find, evaluate, process, manage and present information resources for academic purposes using appropriate technology. Apply effective search strategies in different technological environments. Demonstrate the ethical and fair use of information resources. Integrate 21st-century communications into the management of academic information.

Core modules

Biometry 120 (BME 120)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Natural and Agricultural Sciences Faculty of Veterinary Science
Prerequisites	At least 4 (50-59%) in Mathematics in the Grade 12 examination, or at least 50% in both Statistics 113, 123 $$
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Statistics
Period of presentation	Semester 2

Module content

Simple statistical analysis: Data collection and analysis: Samples, tabulation, graphical representation, describing location, spread and skewness. Introductory probability and distribution theory. Sampling distributions and the central limit theorem. Statistical inference: Basic principles, estimation and testing in the one- and two-sample cases (parametric and non-parametric). Introduction to experimental design. One- and twoway designs, randomised blocks. Multiple statistical analysis: Bivariate data sets: Curve fitting (linear and non-linear), growth curves. Statistical inference in the simple regression case. Categorical analysis: Testing goodness of fit and contingency tables. Multiple regression and correlation: Fitting and testing of models. Residual analysis. Computer literacy: Use of computer packages in data analysis and report writing.

Plant biology 161 (BOT 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education
Prerequisites	MLB 111 GS
Contact time	fortnightly practicals, 2 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Plant and Soil Sciences
Period of presentation	Semester 2

Basic plant structure and function; introductory plant taxonomy and plant systematics; principles of plant molecular biology and biotechnology; adaptation of plants to stress; medicinal compounds from plants; basic principles of plant ecology and their application in natural resource management.

General chemistry 117 (CMY 117)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites Final Grade 12 marks of at least 60% for Mathematics and 60% for Physical Sciences.	
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Chemistry
Period of presentation	Semester 1

Module content

General introduction to inorganic, analytical and physical chemistry. Atomic structure and periodicity. Molecular structure and chemical bonding using the VSEOR model. Nomenclature of iorganic ions and compounds. Classification of reactions: precipitation, acid-base, redox reactions and gas-forming reactions. Mole concept and stoichiometric calculations concerning chemical formulas and chemical reactions. Principles of reactivity: energy and chemical reactions. Physical behaviour gases, liquids, solids and solutions and the role of intermolecular forces. Rate of reactions: Introduction to chemical kinetics.

General chemistry 127 (CMY 127)

Module credits	16.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Health Sciences Faculty of Veterinary Science
Prerequisites Natural and Agricultural Sciences students: CMY 117 GS or CMY 154 GS Hea Sciences students: none	
Contact time	1 practical per week, 4 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Chemistry
Period of presentation	Semester 2

Theory: General physical-analytical chemistry: Physical behaviour of gases, liquids and solids, intermolecular forces, solutions. Principles of reactivity: energy and chemical reactions, entropy and free energy, electrochemistry. Organic chemistry: Structure (bonding), nomenclature, isomerism, introductory stereochemistry, introduction to chemical reactions and chemical properties of organic compounds and biological compounds, i.e. carbohydrates and amino acids. Practical: Molecular structure (model building), synthesis and properties of simple organic compounds.

Introductory genetics 161 (GTS 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Veterinary Science
Prerequisites	MLB 111 GS
Contact time	fortnightly practicals, 2 lectures per week
Language of tuition	Both Afr and Eng
Academic organisation	Genetics
Period of presentation	Semester 2

Module content

Chromosomes and cell division. Principles of Mendelian inheritance: locus and alleles, dominance interactions and epistasis. Probability studies. Sex determination and sex linked traits. Pedigree analysis. Extranuclear inheritance. Genetic linkage and chromosome mapping. Chromosome variation.

Introduction to microbiology 161 (MBY 161)

Module credits	8.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MLB 111 GS
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Both Afr and Eng
Academic organisation	Microbiology and Plant Path
Period of presentation	Semester 2

Module content

The module will introduce the student to the field of Microbiology. Basic Microbiological aspects that will be covered include introduction into the diversity of the microbial world (bacteria, archaea, eukaryotic microorganisms and viruses), basic principles of cell structure and function, microbial nutrition and microbial growth and growth control. Applications in Microbiology will be illustrated by specific examples i.e. bioremediation, animal-microbial symbiosis, plant-microbial symbiosis and the use of microorganisms in industrial microbiology. Wastewater treatment, microbial diseases and food will be introduced using specific examples.

Molecular and cell biology 111 (MLB 111)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Health Sciences

Faculty of Veterinary Science

PrerequisitesRefer to Regulation 1.2: A candidate who has passed Mathematics with at least

50% in the Grade 12 examination

Contact time 4 lectures per week, 1 practical per week

Language of tuition Both Afr and Eng

Academic organisation Genetics

Period of presentation Semester 1

Module content

Introductory study of the ultra structure, function and composition of representative cells and cell components. General principles of cell metabolism, molecular genetics, cell growth, cell division and differentiation.

Physics for biology students 131 (PHY 131)

Module credits 16.00

Faculty of Education

Service modules Faculty of Health Sciences

Faculty of Veterinary Science

PrerequisitesRefer to Regulation 1.2: A candidate must have passed Mathematics with at least

50% in the Grade 12 examination

Contact time 1 practical per week, 4 lectures per week, 1 discussion class per week

Language of tuition Both Afr and Eng

Academic organisation Physics

Period of presentation Semester 1

Module content

Units, vectors, one dimensional kinematics, dynamics, work, equilibrium, sound, liquids, heat, thermodynamic processes, electric potential and capacitance, direct current and alternating current, optics, modern physics, radio activity.

Mathematics 134 (WTW 134)

Module credits 16.00

Faculty of Engineering, Built Environment and Information Technology

Service modules Faculty of Education

Faculty of Veterinary Science

PrerequisitesRefer to Regulation 1.2: At least 50% for Mathematics in the Grade 12

examination.

Contact time 4 lectures per week, 1 tutorial per week

Language of tuition Both Afr and Eng

Academic organisation Mathematics and Applied Maths

Period of presentation Semester 1

Module content

*Students will not be credited for more than one of the following modules for their degree: WTW 134, WTW 165, WTW 114, WTW 158. WTW 134 does not lead to admission to Mathematics at 200 level and is intended for students who require Mathematics at 100 level only. WTW 134 is offered as WTW 165 in the second semester only to students who have applied in the first semester of the current year for the approximately 65 MBChB, or the 5-6 BChD places becoming available in the second semester and who were therefore enrolled for MGW 112 in the first semester of the current year. Functions, derivatives, interpretation of the derivative, rules of differentiation, applications of differentiation, integration, interpretation of the definite integral, applications of integration. Matrices, solutions of systems of equations. All topics are studied in the context of applications.

Animal diversity 161 (ZEN 161)

Module credits 8.00

Service modules Faculty of Education

Faculty of Veterinary Science

Prerequisites MLB 111 GS or TDH

Contact time 2 lectures per week, fortnightly practicals

Language of tuition Both Afr and Eng

Academic organisation Zoology and Entomology

Period of presentation Semester 2

Module content

Animal classification, phylogeny, organization and terminology. Evolution of the various animal phyla, morphological characteristics and life cycles of parasitic and non-parasitic animals. Structure and function of reproductive, respiratory, excretory, circulatory and digestive systems.

Curriculum: Year 2

Minimum credits: 135

Core modules

Introduction to proteins and enzymes 251 (BCM 251)

Module credits 12.00

Service modules Faculty of Health Sciences

Prerequisites [CMY117 GS] and [CMY127 GS] and [MLB111 GS]

Contact time 2 lectures per week, 90 minute practical per week

Language of tuition Double Medium

Academic organisation Biochemistry

Period of presentation Semester 1

Module content

Structural and ionic properties of amino acids. Peptides, the peptide bond, primary, secondary, tertiary and quaternary structure of proteins. Interactions that stabilise protein structure, denaturation and renaturation of proteins. Introduction to methods for the purification of proteins, amino acid composition, and sequence determinations. Introduction to enzyme kinetics and enzyme inhibition. Allosteric enzymes, regulation of enzyme activity, active centres and mechanisms of enzyme catalysis. Examples of industrial applications of enzymes. Practical training in laboratory techniques and Good Laboratory Practice. Techniques for the quantitative and qualitative analysis of biological molecules. Processing and presentation of scientific data.

Plant physiology and biotechnology 261 (BOT 261)

Module credits 12.00

Service modules Faculty of Education

Prerequisites BOT 161, CMY 117, CMY 127 or TDH

Contact time 2 lectures per week, 1 practical per week

Language of tuition Both Afr and Eng

Academic organisation Plant and Soil Sciences

Period of presentation Semester 2

Module content

Nitrogen metabolism in plants; nitrogen fixation in Agriculture; plant secondary metabolism and natural products; photosynthesis and carbohydrate metabolism in plants; applications in solar energy; plant growth regulation and the Green Revolution; plant responses to the environment; developing drought tolerant and disease resistant plants.

Molecular genetics 251 (GTS 251)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites GTS 161 GS

Contact time fortnightly practicals, 2 lectures per week

Language of tuition English

Academic organisation Genetics

Period of presentation Semester 1

Module content

Chemical nature of DNA. Replication transcription, RNA processing and translation. Control of gene expression in prokaryotes and eukaryotes. Recombinant DNA technology and its applications in gene analysis and manipulation.

Genetic diversity and evolution 261 (GTS 261)

Module credits 12.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Faculty of Education

Prerequisites GTS 251 GS

Contact time 2 lectures per week, fortnightly practicals

Language of tuition English

Academic organisation Genetics

Period of presentation Semester 2

Module content

Chromosome structure and transposable elements. Mutation and DNA repair. Genomics and proteomics. Organelle genomes. Introduction to genetic analysis of populations: allele and genotypic frequencies, Hardy Weinberg Law, its extensions and implications for different mating systems. Introduction to quantitative and evolutionary genetics.

Introduction to agricultural economics 210 (LEK 210)

Module credits 12.00

Service modules Faculty of Economic and Management Sciences

Prerequisites No prerequisites.

Contact time 3 lectures per week

Language of tuition Double Medium

Academic organisation Agric Econ, Ext + Rural Dev

Period of presentation Semester 1

Introduction to financial management in agriculture: Farm management and agricultural finance, farm management information; analysis and interpretation of farm financial statements; risk and farm planning. Budgets: partial, break-even, enterprise, total, cash flow and capital budgets. Time value of money. Introduction to production and resource use: the agricultural production function, total physical product curve, marginal physical product curve, average physical product curve, stages of production. Assessing short-term business costs; Economics of short-term decisions. Economics of input substitution: Least-cost use of inputs for a given output, short-term least-cost input use, effects of input price changes. Least-cost input use for a given budget. Economics of product substitution. Product combinations for maximum profit. Economics of crop and animal production.

Agricultural economics 220 (LEK 220)

Module credits	12.00
Service modules	Faculty of Economic and Management Sciences
Prerequisites	[LEK 210] or [EKN 113 and/or EKN 120]
Contact time	3 lectures per week
Language of tuition	Double Medium
Academic organisation	Agric Econ, Ext + Rural Dev

Period of presentation Semester 2

Module content

The agribusiness system; the unique characteristics of agricultural products; marketing functions and costs; market structure; historical evolution of agricultural marketing in South Africa. Marketing environment and price analysis in agriculture: Introduction to supply and demand analysis.

Marketing plan and strategies for agricultural commodities; market analysis; product management; distribution channels for agricultural commodities, the agricultural supply chain, the agricultural futures market.

Bacteriology 251 (MBY 251)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MBY 161 GS
Contact time	2 lectures per week, 1 practical per week
Language of tuition	English
Academic organisation	Microbiology and Plant Path
Period of presentation	Semester 1

Growth, replication and survival of bacteria, Energy sources, harvesting from light versus oxidation, regulation of catabolic pathways, chemotaxis. Nitrogen metabolism, iron-scavenging. Alternative electron acceptors: denitrification, sulphate reduction, methanogenesis. Bacterial evolution, systematic and genomics. Biodiversity; bacteria occurring in the natural environment (soil, water and air), associated with humans, animals, plants, and those of importance in foods and in the water industry.

Mycology 261 (MBY 261)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	MBY 161
Contact time	1 practical per week, 2 lectures per week
Language of tuition	English
Academic organisation	Microbiology and Plant Path

Period of presentation Semester 2

Module content

Organisation and molecular architecture of fungal thalli, chemistry of the fungal cell. Chemical and physiological requirements for growth and nutrient acquisition. Mating and meiosis; spore development; spore dormancy, dispersal and germination. Fungi as saprobes in soil, air, plant, aquatic and marine ecosystems; role of fungi as decomposers and in the deterioration of materials; fungi as predators and parasites; mycoses, mycetisms and mycotoxicoses; fungi as symbionts of plants, insects and animals. Applications of fungi in biotechnology.

Introduction to crop protection 251 (PLG 251)

Module credits	12.00
Prerequisites	No prerequisites.
Contact time	2 lectures per week, 1 practical per week
Language of tuition	Double Medium
Academic organisation	Microbiology and Plant Path
Period of presentation	Semester 1

Module content

Development and importance of crop protection. Basic principles in crop protection i.e. epidemic development of disease and insect pest populations, ecology of plant diseases and abiotic factors that affect plant health i.e. environmental pollution and pesticides, nutrient deficiencies and extreme environmental conditions. Ecological aspects of plant diseases, pest outbreaks and weed invasion. Important agricultural pests and weeds. Life cycles of typical disease causing organisms. Basic principles of integrated pest and disease management.

Principles of plant pathology 262 (PLG 262)

Module credits	12.00
Prerequisites	MBY 161

Contact time 1 practical per week, 2 lectures per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

Fundamental principles of plant pathology. The concept of disease in plants. Causes of plant diseases. Stages in development of plant diseases. Disease cycles. Diagnosis of plant diseases.

Sustainable crop production and agroclimatology 251 (PPK 251)

Module credits 15.00

Prerequisites BOT 161

Contact time 3 lectures per week, fortnightly practicals

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Semester 2

Module content

Influence of climate on cropping systems in South Africa. The surface energy balance. Hydrological cycles and the soil water balance. Sustainable crop production. Simple radiation and water limited models. Potential yield, target yield and maximum economic yield. Crop nutrition and fertiliser management. Principles of soil cultivation and conservation. Climate change and crop production – mitigation and adaptation.

Curriculum: Year 3

Minimum credits: 150

Core modules

Plant ecophysiology 356 (BOT 356)

Module credits 18.00

Service modules Faculty of Education

Prerequisites BOT 161 or TDH

Contact time 1 practical per week, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Plant and Soil Sciences

Period of presentation Semester 1

Module content

The emphasis is on the efficiency of the mechanisms whereby C3-, C4 and CAM-plants bind CO2 and how it impacted upon by environmental factors. The mechanisms and factors which determine the respiratory conversion of carbon skeletons and how production is affected thereby will be discussed. Insight into the ecological distribution and manipulation of plants for increased production is gained by discussing the internal mechanisms whereby carbon allocation, hormone production, growth, flowering and fruitset are influenced by external factors. To understand the functioning of plants in diverse environments, the relevant structural properties of plants, and the impact of soil composition, water flow in the soil-plant air continuum and long distance transport of assimilates will be discussed. Various important techniques will be used in the practicals to investigate aspects such as water-use efficiency, photosynthesis and respiration of plants.

Introductory geographic information systems 283 (GGY 283)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology Faculty of Education Faculty of Humanities
Prerequisites	Only available to students studying the following:12132022, 12132002, 12132004, 02133312, 02133383, 02133361, 02133385, 09133040 and 01130001
Contact time	2 lectures per week, 1 practical per week
Language of tuition	English
Academic organisation	Geography, Geoinf + Meteor
Period of presentation	Semester 1

*This is a closed module, only available to students studying [BTandRP] (12132022), [BSc(Arch)] (12132002), [BSc(LArch)] (12132004), BSc Meteorology (02133312), BSc Geoinformatics (02133383), BSc Environmental Science (02133361), BSc Geography (02133385), BEd Further Education and Training (General) (09133040), BA (01130001) or as approved by the head of department. The content of this module is the same as GIS 221 and students are not allowed to earn credits for both GGY 283 and GIS 221.

Introduction to Geographic Information Systems (GIS), theoretical concepts and applications of GIS. The focus will be on the GIS process of data input, data analysis, data output and associated technologies.

Introductory soil science 250 (GKD 250)

Module credits	12.00
Service modules	Faculty of Engineering, Built Environment and Information Technology
Prerequisites	CMY 117 GS or TDH

Contact time 1 practical per week, 3 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Semester 1

Module content

Origin and development of soil, weathering and soil formation processes. Profile differentiation and morphology. Physical characteristics: texture, structure, soil water, atmosphere and temperature. Chemical characteristics: clay minerals, ion exchange, pH, buffer action, soil acidification and salinisation of soil. Soil fertility and fertilisation. Soil classification. Practical work: Laboratory evaluation of simple soil characteristics. Field practicals on soil formation in the Pretoria area.

Virology 351 (MBY 351)

Module credits	18.00
Prerequisites	BCM 251 and CMY 127 and MBY 161
Contact time	1 practical per week, 2 lectures per week
Language of tuition	English
Academic organisation	Microbiology and Plant Path
Period of presentation	Semester 1

Module content

Introduction to the viruses as a unique kingdom inclusive of their different hosts, especially bacteria, animals and plants; RNA and DNA viruses; viroids, tumour viruses and oncogenes, mechanisms of replication, transcription and protein synthesis; effect on hosts; viral immunology; evolution of viruses.

Genetic manipulation of microbes 364 (MBY 364)

Module credits	18.00
Prerequisites	BCM 251 and CMY 127 and MBY 161

Contact time 2 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

Isolation of clonable DNA (genomic libraries, cDNA synthesis) cloning vectors (plasmids, bacteriophages, cosmids) plasmid incompatibility and control of copy number. Ligation of DNA fragments, modification of DNA end and different ligation strategies. Direct and indirect methods for the identification of recombinant organisms. Characterization (polymerase chain reaction, nucleic acid sequencing) and mutagenisis of cloned DNA fragments. Gene expression in Gram negative (E.coli) Gram positive (B.subtilis) and yeast cells (S.cerevisea). Use of Agrobacterium and baculoviruses for gene expression in plant and insect cells respectively. Applications in protein engineering, diagnostics and synthesis of useful products.

General plant pathology 351 (PLG 351)

Module credits 18.00

Prerequisites MBY161, MBY261 and PLG262

Contact time 2 lectures per week, 1 practical per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Semester 1

Module content

Principles and examples of plant diseases and their socio-economic importance. Current trends in plant pathology such as biosecurity, sanitory and phytosanitary issues of trade. Risk assessment and international food safety standards. The use of global information systems to assess disease spread and impact of global warming. Supply chain analysis, postharvest technology and food trade aspects.

Plant disease control 363 (PLG 363)

Module credits 18.00

Prerequisites PLG251 or PLG262 or TDH. MBY261 is recommended

Contact time 2 lectures per week, 1 practical per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

Principles of plant disease control. Non-chemical control including biological control, disease resistance, regulatory measures, cultivation practices, physical methods. Modern chemo-therapy: characteristics, mode of action and application of fungicides, bactericides and nematicides. Principles of integrated disease management.

Plant genetics and crop biotechnology 361 (BTC 361)

Module credits 18.00

Service modules Faculty of Engineering, Built Environment and Information Technology

Prerequisites GTS 251 and {GTS 261 GS or BOT 261} and {GTS 351 and GTS 352 are

recommended}

Contact time 2 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Genetics

Period of presentation Semester 2

Module content

Plant genetics and genomics: gene control in plants, epigenetics, co-suppression, forward and reverse genetics, structural and functional genomics. Plant development: signal perception, cell death, control of cell division. Plant-environment interactions. Crop genetic modification: food security, GMO regulation, plant transformation, whole-chromosome transformation, synthetic biology, homologous recombination. Crop molecular markers: marker types, genotyping, QTL mapping, marker-assisted breeding. Future of crop biotechnology: applications of genomics, biopharming, genetical genomics, systems biology

Microbe interactions 365 (MBY 365)

Module credits 18.00

Prerequisites MBY251, MBY261 and MBY351

Contact time 1 practical per week, 2 lectures per week

Language of tuition English

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

Interactions between microbes and their abiotic environment; microbial interaction with other strains of the same and other species; microbial interactions across kingdoms; pathogenic interactions between microbes and plant or animal hosts; mutualistic interactions between microbes and their hosts; introduction to systems biology.

Curriculum: Final year

Minimum credits: 164

Core modules

Principles and practices 351 (HSC 351)

Module credits 14.00

Prerequisites No prerequisites.

Contact time fortnightly practicals, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Semester 1

Module content

The organised nursery industry in South Africa. Principles: seed production; seed germination; rooting of cuttings; budding and grafting; propagation using specialised organs; micro propagation (tissue culturing). Practices: Greenhouse construction, lighting in the nursery; cooling and heating; soil-based and soil-less growing media; container types; irrigation and fertilisation; growth manipulation; pest and disease management. Management, economic and marketing aspects of a typical nursery operation. Students will get hands-on experience and will visit nurseries.

Weed science 413 (OKW 413)

Module credits 14.00

Prerequisites PLG 251

Contact time fortnightly practicals, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Semester 2

Module content

Identification of important weeds of crops, gardens and recreational areas.

Identification of alien invasive and indigenous encroaching species. Impacts of weeds on desirable vegetation. Interference between crop and weed species through allelopathy and competition phenomena. Role of weeds in plant-biodiversity and crop production potential. Weeds in annual and perennial crop situations. Weed biology and ecology. Mechanical, cultural, biological and chemical weed management practices. Integrated weed management. Herbicide formulations and application techniques. Modes of action of herbicides, and their behaviour and fate in the environment.

Seminar 400 (PGW 400)

Module credits 20.00

Prerequisites No prerequisites.

Contact time 1 lecture per week

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Year

Module content

Basic principles of the scientific process. Literature accessing and article assessment. Manuscript preparation and presentation of seminars. Basic instruction on the use of visual aids, etc. for effective oral presentations.

Experimental design and analysis 421 (PGW 421)

Module credits 14.00

Prerequisites BME 120

Contact time fortnightly practicals, 2 lectures per week

Language of tuition Both Afr and Eng

Academic organisation Plant Production and Soil Sc

Period of presentation Semester 1

Module content

Basic experimental designs. Measurement and control over experimental error. Factorial experiments and interactions. Analysis of variance (ANOVA) and data interpretation.

Research project 462 (PLG 462)

Module credits 30.00

Prerequisites No prerequisites.

Contact time 1 practical per week, 1 lecture per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Year

Module content

A practical research project of limited extent under the supervision of one of the lecturers in plant pathology within the department. Any topic in plant pathology can be selected.

Advanced plant disease control 483 (PLG 483)

Module credits 18.00

Prerequisites PLG 363 or TDH

Contact time 1 practical per week, 2 discussion classes per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Semester 1

Module content

Advanced aspects of chemical and biological control of plant diseases as well as disease resistance.

Current concepts in plant pathology 490 (PLG 490)

Module credits 18.00

Prerequisites Third-year status or TDH

Contact time 1 seminar per week

Language of tuition Double Medium

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

This module will address the most recent concepts in plant pathology.

Applied entomology 365 (ZEN 365)

Module credits 18.00

Service modules Faculty of Education

Prerequisites No prerequisites.

Contact time 2 practicals per week, 4 lectures per week

Language of tuition English

Academic organisation Zoology and Entomology

Period of presentation Quarter 4

Module content

*It is strongly recommended that students first complete ZEN 355: Insect diversity 355 Impact of insects on economies, human health and well-being. Protection of corps from insect herbivores through monitoring, forecasting and application of the principles of integrated pest management; epidemiology and modern developments in the control of insect vectors of human and animal diseases; insects as a tool in forensic investigations; ecological and economic significance of insect pollinators and current threats to their survival and health. Lecturers will be complemented by practical experiences that provide students with skills in the design, conduct, analysis, interpretation and reporting of applied entomological research.

Plant disease epidemiology 463 (PLG 463)

Module credits 18.00

Prerequisites PLG 251, PLG 262 and PLG 363

Contact time 2 lectures per week, 1 practical per week

Language of tuition English

Academic organisation Microbiology and Plant Path

Period of presentation Semester 2

Module content

Understanding of how plant disease epidemics occur in nature and how they can be monitored and analysed. Indepth knowledge how of plant diseases cause crop losses, how these losses are quantified, and how losses are predicted. Examples of how epidemiology is used to set the strategy of plant disease control. Use of some statistical procedures for quantifying and comparing epidemics.

The information published here is subject to change and may be amended after the publication of this information. The General Regulations (G Regulations) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the General Rules section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.