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Breathers, where they appear? 
• In systems of coupled 

nonlinear oscillators. 

•  Vibrations

•  Localized

•  Exact

What are 
they?
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Theoreticians in breathers

An experimentalist knows the question but 
not the anwer.

A theoretician knows the answer but 
doesn’t know the question.

If breathers are the answer, what is the 
question? GP Tsironis, Chaos 13, 657 (2003)
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Two questions on mica

• Dark tracks:  Russell, Eilbeck

• Low Temperature Reconstructive      
Transformations (LTRT).
 Sevilla Materials Science Group:Alba, Becerro, 
Naranjo, Trillo (MSG)
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Dark traks in mica moscovite: Quodons (Russell)
Black tracks:  Fe3O4

Cause:
• 0.1% Particles:  

•muons: produced by 
interaction with neutrinos
• Positrons: produced by 
muons’ electromagnetic 
interaction and K decay

• 99.9% Unknown
¿Lattice localized vibrations: 
quodons?
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Black traks are alogn lattice directions within the K+ layer
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300° C, 3 days

Lu3+

Reconstructive transformation of muscovite
Muscovite

Disilicate of Lutetium
Lu2Si2O7

K2[Si6Al2]IV[Al 4 ]VIO20(OH)4

About 36% of muscovite is transformed
K+



Why LTRT can be interesting?

12



Deeep geological depositories for nuclear waste.
  

EBS:
 Engineered barrier system

• In laboratory  lutetium 
substitutes to heavy 
radionuclides

Reconstructive transformations trap the radionuclides
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300° C, 3 days

Lu3+

Reconstructive transformation of muscovite
Muscovite

Disilicate of Lutetium
Lu2Si2O7

K2[Si6Al2]IV[Al 4 ]VIO20(OH)4

About 36% of muscovite is transformed
K+



Untreated muscovite

Scanning electron microscopy with energy 
dispersive X-ray (EDX) analysis

Treated muscovite

Three different types of particles: muscovite, Lu2Si2O7 and bohemite
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X-Ray powder diffraction

Consistent with:

•Untreated:
Perfect ordering

• Treated
•Two new phases:

Lu2Si2O7

Bohemite

• Uncomplete transformation

m=muscovite, b=bohemite, 
*Lu2Si2O7

[Alba and Chain, Clays Clay Min. 53. 39 (2005)]

Treated

Untreated
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Nuclear Magnetic Resonance
Magic Angle Spinning for silicon

Untreated muscovite Treated muscovite

Muscovite

Lu2Si2O7

36.6%  of Si has changed to the Lu2Si2O7 phase 
17
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•  In the laboratory the long times of ageing are simulated with 
higher temperatures
• Activation energies range typically about 200-400 kJ/mol
• They involve the breaking of the Si-O bond, stronger than that 
between any other element and oxygen and are observed in silicates 
only above 1000 C
• A condition for the transformation to take place is that sufficient 
atoms have enough energy to achieve a transition activated state. 
• Low temperature reconstructive transformations (LTRT) in 
layered silicates was achieved by MSG at temperatures 500 C 
lower than the lowest temperature reported before [Becerro et al, 
J. Mater. Chem 13, (2003)]
• LTRT take place in the presence of the cation layer
• Possible application in engineered barriers for nuclear waste in 
deep geological repositories.

Reconstructive transformations in layered silicates



Some facts about LTRT

LTRT can be described by:
• Breaking of the Arrhenius law
• An increase of the reaction speed
• A diminution of the activation energy

No explanation had been provided for LTRT

Could breathers be?
Mackay and Aubry [Nonlinearity, 7, 1623 (1994)] 
suggested the breaking of Arrhenius law as a consequence 
of discrete breathers.
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Reaction speed and statistics
Arrhenius law:  κ = A exp (-Ea/RT ) 

Transition state theory Ea~100-200 KJ/mol
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Outline of what follows:

Breather review with application to mica
Breathers in mica.
Breather statistics with modification
Effect of  breathers on the reaction rate
Effect of breathers on the reaction rate theory
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Linear oscillator: F=-k x,  V= ½ k x2 

x=A cos(ω0 t +ϕ0) ,                         22
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Linear oscillator: F=-k x,  V= ½ k x2 

x=A cos(ω0 t +ϕ0) ,                         ω0 ≠ ω0(E) 24

The blue and red balls come back at the same time



Hard nonlinear oscillator

V=½ (ω0)2x2+¼ x4
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Hard nonlinear oscillator

V=½ (ω0)2x2+¼ x4
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The blue ball has done a complete 
ocillation but the red one has not



Soft nonlinear oscillator

V=½ (ω0)2x2 - ¼ x4
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Soft nonlinear oscillator

V=½ (ω0)2x2 - ¼ x4

28

The red ball has done a complete
oscillation but the blue one has not



Asymmetric soft nonlinear oscillator

Morse potential
V=½ (ω0)2(1-exp(-x))2
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The nonlinear oscillator
Potential: V(x)~1/2 m (ω0)2 x2 + a x3+b x4+··· 

Fuerza: F = -V’(x)= -m (ω0)2 x +3a x2+4 b x3  ≠ -k x

Solution:   x=g(ωb t + ϕ0)  ; g: 2π periodic

x= a0+a1cos(ωb t + ϕ1)+a2cos(2ωb t + ϕ2)+···

Breather frequency ωb depends on E:    ωb =ωb(E)
• Hard:    ωb´(E) > 0,    ωb >ω0 
• Soft: ωb´(E) < 0,    ωb <ω0
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Nonlinear oscillator: soft-hard potential
Potential  V(x)=D(1-e-bx2)+γx6
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Lattice of coupled nonlinear oscillators

Equation:

 xn´´(t) =-V’’(xn) + ε (xn+1-xn) - ε (xn-xn-1)      

Well known solutions:  phonons

n  n+1 n-1

32

For small  oscillations or linear potentials:

 xn´´(t) =- ω0
2xn

2 + ε (xn+1-xn) - ε (xn-xn-1)      



Phonons:  xn= A cos(q n- ωq t )
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Phonons:  xn= A cos(q n- ωq t )
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Phonons:  xn= A cos(q n- ωq t )
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Phonon characteristics
• Extended with uniform amplitude

• Frquency band:
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• The energy is dispersed on phonons
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Perturbation of a linear network or small pertubation of 
a nonlinear one



• The energy is dispersed on phonons
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• The energy is dispersed on phonons
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Perturbation of a linear network or small pertubation of 
a nonlinear one

• The energy is dispersed on phonons

40



Large perturbation of a nonlinear network
• Energy remains localized
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Large perturbation of a nonlinear network
• Energy remains localized
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Large perturbation of a nonlinear network
• Energy remains localized
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Large perturbation of a nonlinear network
• Energy remains localized
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Breather
• Exact, periodic, localized solution
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Breather
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Breather
• Exact, periodic, localized solution
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Breather frequency and phonon band
           Soft                          Hard            
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Conditions for breather existence

• The breather frequency and its 
harmonics have to be outside the 
phonon band.

n ωb ∉ [ω0, ωph,max] 

• The oscillator has to be nonlinear 
for the given amplitude or energy

ωb’(E) ≠0
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Moving breathers
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Moving breathers
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Moving breathers
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Moving breathers

55



Moving breathers
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Moving breathers
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Moving breathers
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Moving breathers
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Moving breather sent against a vacancy

Interstitials and vacancies
can:
1. move forward
2. move backwards
3. stay stationay

The behaviour is related
with the defect breather

Influence of moving breathers on vacancies migration.
J Cuevas, C Katerji, JFR Archilla, JC Eilbeck and FM Russell
Phys. Lett. A 315(5):364-371, 2003 60



Two dimensional networks
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Example: moscovite mica

K+
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Breathers in mica
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Breathers in mica
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Breathers in mica

65



Breathers in mica
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Breathers in mica
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Moving breathers in a 2D hexagonal lattice

No apparent dispersion in 
1000~10000 lattice units

Localized moving breathers in a 2D hexagonal lattice.
JL Marín, JC Eilbeck, FM Russell, Phys. Lett A 248 (1998) 225 68



Breathers in mica

Steps:
•  Find the vibration mode
• Construct the model
• Obtain parameter values
• Obtain breather energies and frequencies 

Later:
• Are their energies high enough to influence the reaction 
rate?
• Are there enough of them?

69



Mode: vibration of K+ normal to the cation layer
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Mathematical model

Harmonic coupling
• k=10±1 N/m ( D. R. Lide Ed., Handbook of Chemistry and 
Physics, CRC press 2003-2004)

Local potential V
• Assignement of far infrared absortion bands of K+ in 
muscovite, [Diaz et al, Clays Clay Miner., 48, 433 (2000)] with 
a band at  143 cm−1.

The nonlinear potential has to be obtained.
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Mica far infrared spectrum obtained at LADIR-CNRS

Bands at 143, 260, 350 and 420 cm-1 are assigned to 
transitions of K+  vibrations 72



Fitting the nonlinear potential

Consistent with the available space for  K+    2x1.45 Å

V(x) = 
D ( [1- exp(- b2 x2) ]+γ x6) 

D = 453 cm-1

 b2 = 36 Å-2

γ= 49884 cm-1 Å-6

cm-1~1.24x10-4 eV
1eV~8000 cm-1

Ψ=Ψ EĤ
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Phonon band νf ∈ [5 , 7.8] THz

ν2= (ν0)2[1+4 ε(sen2(q1/2)+sen2(q1/2)+sen2(q2/2-q1/2))] 74
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Mean energy of each phonon mode

<Eph>=(n+0.5) hν

n=1/(eβhν -1)

T=573 K

1eV~100 KJ/mol
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Energy density profiles for two soft breathers

νb=0.97ν0,   E =25.6 kJ/mol νb =0.85 ν0,  E =36.3 kJ/mol
ν0= 167.5 cm-1 ~ 5·1012 Hz
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Breather frequency versus energy

ν0= 167.5cm-1

 ~ 5·1012 Hz

Mimimum energies
∆s = 22.4 kJ/mol

∆h = 240 kJ/mol

BREATHERS HAVE LARGER ENERGIES THAN THE
ACTIVATION ENERGY

Activation energy
estimated in 
100-200 kJ/mol



Profile of a hard breather

ν=1.7 ν0=
 8.54 THz

E=272 KJ/mol
78



¿How many phonons? ¿How many breathers?
¿With which energies?

Phonons:  fraction of phonons per site with energy 
larger than Ea :   Cph(Ea) = exp(-Ea/RT) 

Breathers:

•Numerically: <nB>~ 10-3           por K+

•Theory: Piazza et al, Chaos 13, 589 (2003)]         
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1.- They have a minimum energy: ∆

2.- Rate of breather creation: B(E)  α exp (- βE ), β=1/kBT

3.- Rate of breather destruction: D(E) α 1/(E-∆) z

       Large breathers live longer.

4.- Thermal equilibrium: if Pb(E) dE is the probability that a

     breather energy is between E and E+dE:
D(E) Pb(E) dE=A B(E)dE,      A≠A(E)

5.- Normalization:               ∫0 Pb(E) dE=1
∝

2D breather statistics: Piazza et al, 2003

80



Breathers statistics. Results.
1.-Pb(E)= βz+1 (E- ∆)z exp[- β(E- ∆)]/Γ(z+1)

2.- <E>=∆+(z+1) kBT

3.- Most probable energy:  Ep= ∆+ z kBT

3.-Fraction of  breathers with energy above E:  

                 Cb(E)=Γ(z+1)-1 Γ(z+1, β[E-∆])

4.- Mean number of breathers per site with energy above E: 
nb(E)=<nb>Cb(E) 

           <nb>=mean number of breathers per site ~10-3

-Function gamma and first incomplete gamma function:

     Γ(z+1)= ∫0 yzexp(-y)dy,    Γ(z+1,x)= ∫x yzexp(-y)dy
∝ ∝
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Probability density and cumulative probability. 
Breathers accumulate at higher energies

∝ ∝
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Numerical simulations in mica (1)
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Numerical simulations in mica (1)
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Numerical simulations in mica (2)
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Numerical simulations in mica (2)
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Comparison  with numerical simulations in mica. 
Before cooling.

Random velocities and positions. Thermal equilibrium.
Cooling at the borders.
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Numerical simulations in mica. After cooling.
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Attemp to fit CB(E): failure.

89



Total failure: Pb(E)
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Reason: different breathers and multibreathers
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Modification of the theory. Breathers with maximum 
energy

1.- Multiple breather types

2.- Differences: 
• Minimum energy  ∆
• Parameter z
• Maximum energy EM  !! :

   -  Normalization:    ∫Pb(E) dE=1

• Different probability for each type of 
breather:
   P(∆, z, EM,?)

EM

∆

92



Breathers with maximum energy. Results.

x

1.- Probability density:

        Pb(E)= βz+1 (E- ∆)z exp[- β(E- ∆)]/ γ(z+1, β[EM- ∆])

3.- Fraction of breathers with energy above E:  

                 Cb(E)=1- γ(z+1, β[E-∆])/ γ(z+1, β[EM-∆])

   - Second incomplete gamma function:

                            γ(z+1,x)= ∫0  yz exp(-y)dy
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Density probability for breathers in mica

·-- Numerical 

__ Theoretical
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Cumulative probability: 
Fraction of breathers with energy equal or larger than E

--·-- Numerical 

__   Theoretical
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Breather energy spectrum

∆  (kJ/mol)             23.9       36.6      41.4     62.2     67.3     82.9
 
z                             1.50       1.17      3.00     0.52     2.07     1.80

EM (kJ/mol))         -           46.9         -           -         -         94.4

probability            0.103    0.026    0.281    0.097  0.202   0.290
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Estimations

For  Ea~100-200 kJ/mol,  T=573 K:

_________________

Reaction time without breathers: 80 a 800 años, 

Moreover, breather can localize more the energy delivered, 
which will increse further the reaction speed

Number of breathers
Number of phonons = 104-105                       (with  E≥ Ea)

THERE ARE MUCH LESS BREATHERS THAN LINEAR
MODES, BUT MUCH MORE WITH ENERGY ABOVE 
THE ACTIVATION ENERGY

Discrete breathers for understanding reconstructive mineral processes at low temperatures 
JFR Archilla, J Cuevas, MD Alba, M Naranjo and JM Trillo, 
J. Phys. Chem. B 110 (47): 24112-24120 (2006) DOI:10.1021/jp0631228. 97

http://dx.doi.org/10.1021/jp0631228


Kramer’s theory revisited
Arrhenius law:  κ = A exp (-Ea/RT ) 

Transition state theory Ea~100-200 KJ/mol

98
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Kramers theory of reaction rate  (1)

Reactants                              Products
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Kramers theory of reaction rate  (2)

Reactants                              Products
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Kramers theory of reaction rate  (2)
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Kramers theory of reaction rate  (2)

Reactants                              Products
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Kramers theory of reaction rate  (3)

V(x) = (1/4)bx4 - (1/2)ax2

( ) 21baxm ±=±Minima at 

baVEa 4/2=∆≡

Barrier height=activation energy:

Frequencies: ( ) mxV m′′=2
0ω ( ) mxV bb ′′=2ω

Stochastic equation: )()( tFxxVx +−′′−=  γ

Stochastic force: 0)( =tF )'(2)()( B ttTktFtF −=′ δπ γ
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Kramers theory of reaction rate  (4)

Kramers reaction rate constant:

( )TkEAk aR B/exp −=

Reaction rate constant: Rk
CBA →+Reaction

mn
R BAk

t
C ][][

d
d =

Arrhenius’ law:

( )TkEk a
b

R B
0 /exp

2
−=

π γ
ωω
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Breather effect: modulation of the potential barrier (1)
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Breather effect: modulation of the potential barrier (2)

( ) ( ) ( ) ( )tVxxxVtxV mm Ω−= cos,

0ω< <ΩIf (adiabatic assumption):

( ) ( ) ,cosexp
B






 Ω=
Tk

tVRtR m
K
 with mean value:

( ) ( )






=




 ΩΩ= ∫
Ω

Tk
VIRdt

Tk
tVRtR m

K
m

K
B

0

2

0
B

cosexp
2

 π

π

I0 is the modified Bessel function of the first kind 
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Breather effect: modulation amplification factor
Amplification factor:  I0 (Vm/kBT) 
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Breather effect: random modulation

Probability of escape from the reactants well: )/~exp( BTkV−

)~cos(~ ϕma VEV +=with

ϕ~and a  random variable with probability density 1/2π, leads to

( ) 





=





= ∫ Tk

VIRd
Tk

VRR m
K

m
K

B
0

2

0
B

~)~cos(exp
2
1~  π

ϕϕ
π

ϕ
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Breather effect: random modulation (2)
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Breather effect: random modulation (2)
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Breather effect: random modulation (2)

114



115

Breather effect: random modulation (2)
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Amplification factor for breathers in the mica model

dETkEIEfRR
E

BBKB ∫
∞

=
min

)/()( 0

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Amplification factor for breathers in the mica model
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Reaction rate theory with account of the crystal anharmonicity 
VI Dubinko, PA Selyshchev and JFR Archilla 
Phys Rev E 83, 041124 (2011) 117



Transversal breathers move slowly but we pan to 
study supersonics kinks along the lattice directions

Supersonic discrete kink-solitons and sinusoidal patterns with “magic” wave number 
in anharmonic lattices. Yu A Kosevich, R Khomeriki  and S Ruffo. 
Europhys. Lett., 66 (1), pp. 21–27 (2004)
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SUMMARY

1.   Breathers do  not need to have an energy larger that the 
activation energy to influence reconstructive transformations

2. A breather modulates the potential barrier  in Kramers theory 
which introduces an amplification factor in the reaction rate.

3. Different types of breathers appear in simulations for the 
cation layer in muscovite

4. The amplification factor increases several order of magnitude 
the reaction rate according with the observed low temperature 
reconstructive transformations

5.  They move slowly, then probably longitudinal kinks are more 
appropriate for quodons.


