THE EFFECTS OF LAND-USE CHANGE ON BENTHIC MACROINVERTEBRATES IN THE UPPER REACHES OF THE APIES-PIENAAR CATCHMENT

Supervisor: Matthys Dippenaar Geology Department Co-Supervisor: Dr Chris Weldon Zoology Department Progress report 2014

Introduction

- Freshwater ecosystems most threatened
- South Africa changes in the socio-economic climate and high levels of development and urbanisation:
 - Increase in impacts to natural water resources

Water Quality

- Water quality and community structure dictated by the natural processes
 - Alteration affect the ecological integrity of rivers
- Land use type is highly associated with changes in surface water chemical and physical quality
- There is a need for sound water and ecosystem management of catchment areas

Benthic Macroinvertebrates

- A surrogate for ecosystem health
- Responses to changes in chemical and physical water quality parameters
 - Extensively investigated
- There is a general trend

Problem

- Highly developed catchments have streams and rivers flowing through multiple land use types over relatively short distances
 - Are the changes at a fine scale sufficient to use as a diagnostic tool for water quality and ecosystem health assessments?
 - Do the same rules apply?

Aim

 To investigate and compare chemical and physical water quality parameters and aquatic macroinvertebrate species composition along a single stream with multiple land use types

Objectives

- Water quality parameters <u>vs</u> aquatic macroinvertebrate assemblages?
- What effects macro invertebrate assemblages?
- Address urban land use variation impacts on surface water quality and ecosystem health

Site Selection

- The upper reaches of the Apies-Pienaar catchment was chosen (8,06 km)
 - Constant geology
 - Flows through multiple distinct land use types
 - Accessibility

Approach • At each site the following was dor 1. Sites described 2. Water quality samples taken 3. Macroinvertebrate samplers p

Site 1 (Source/ Residential)

- Source
- Frank Struben Bird Sanctuary
- Shallow, stagnant water
- Muddy substrate
- Extensive natural vegetation
- Low accessibility

Site 2 (Recreational)

- LC De Villiers Sports Grounds
- Vegetation upkeep
- Muddy substrate
- High canopy cover
- High accessibility

Site 3 (Wetland/Least transformed)

- After Colbyn Valley Wetland
- Deep free flowing
- High riparian vegetation
- Rock and clay substrate
- Water seemed most pristine

Site 4 (Residential)

- Waverly and N1
- Rocky clay substrate
- Deep, free flowing
- Highly assessable
- Highway/drains/excrement

Site 5 (Industrial) • East Lynn • Shallow, free flowing • Rocky clay substrate • Highly assessable • Squatters/refuse/drains

Water Quality

- Water quality samples are to be taken at each site for the following:
 - Physical:
 - Temperature
 - pH
 - Turbidity
 - Electrical conductivity
 - Chemical:
 - Total dissolved solids/Salinity
 - Trace metals
 - Nutrient enrichment
 - Dissolved oxygen
 - Biological:
 - Organic enrichment
 - Total petroleum hydrocarbons
 - Microbial pollution

Macroinvertebrate Samplers

- Artificial Substrate Samplers
 - Why samplers?
 - High variation in substrate between sites, Low variation in micro habitats within sites
 - Fourteen 7,6 cm x 7,6 cm
 Hardboard plates
 - Varied spacers between the plates

Repetition

- After 6 weeks:
 - Visual observations made (in case of changes)
 - Water quality samples taken again
 - Samplers are retrieved and replaced with fresh samplers
- Three 6 week periods

Retrieval and Identification

- Macroinvertebrate samples were removed from sampler in the lab
- Identified to family level using dissection microscope and taxonomic keys
- Families will be counted
 - Family richness
 - Total abundance
 - Shannon-Weiner index

Statistical analysis

Water quality

- 2 way ANOVA
 - Time
 - Land use
- Ordination
 - PCA

Macroinvertebrates

- 2 way ANOVA
 - Family richness
 - Total abundance
 - Shannon-Weiner index
- Ordination
 - nMDS

Limitations

- Land use types not equal in length possibly causing variation in change in water quality.
- Land use types are not strictly isolated from one another thus may influence one another.
- By using artificial substrates various taxa are omitted from samples, however this is justified in the standardisation of sampling method.

Acknowledgments

- Funding:
 - Water Research Commission
 - Project K5/2052- Vadose Zone Hydrology
- Access and Permission
 - City of Tshwane
 - Friends of Colbyn Valley
 - Adopt Moreletaspruit Initiative
- Enjoyment:
 - Sarah Mahlangu for helping out

References

- Abell. R. 2001. Conservation Biology for the Biodiversity Crisis: a Freshwater Follow-up. Conservation Biology. 16: 1435-1437
- Allan, J. D., Johnson, L. B. 1997. Catchment-Scale Analysis of Aquatic Ecosystems. Freshwater Biology1: 107–111
- Arman, N, Z., Salmiati., Said, M. I., Azman, Shamila., Azri, Shahrul., Safeai, M. 2012. Benthis Macroinvertebrates as an Alternative Tool for Biological Monitoring in Assessing River Water Quality. International Proceedings of Chemical, Biological and Environmental Engineering. 33:53-56.
- Bis, B., Zdanowicz, A., Zalewski, M. 2000. Effects of Catchment Properties on Hydrochemistry, Habitat Complexity and Invertebrate Community Structure in Lowland Rivers. Hydrobiologia. 423: 369-387
- Du Preez, H. H., Kempster, P. L., Kleynhans, C. J., Roux, D. J., Van Vliet, H. R. 1999. Integrating Stressor and Response Monitoring into Resource-Based Water Quality Assessment Framework. Environmental Management 23: (1) 15-30
- Hall, M. J., Gerhard, P. C., Ralph, H. R. 2001. Relationship Between Land Use and Stream Invertebrate Community Structure in a Soutlesland. New Zealand. Coastal Stream Catchment. New Zealand Journal of Marine and Freshwater Research. 35: 591-693
- Lenat, D. R., Crawford, K. 1994. Effects of Land Use on Water Quality and Aquatic Biota of Three North Carolina Piedmont Stream Hydrobiologia. 294:185-199
- Maldonado, V. G. M. 2010. Land Use Influence on Benthic Macroinvertebrate Communities of streams in Nyangores and Amala Tributaries of Mara River, Kenya. MScThesis, UNESCO-IHE Institute for Water Research, Delft, The Netherlands.
- Mason, C.F., Parr, B. L. 2003. Long-term Trends in Water Quality and their Impact on Macroinvertebrate Assemblages in Eutrophi Lowland Rivers. Water Research. 37: 2969–2979.
- Morse, J. C., Bae, Y. J., Munkhjargal, G., Sangpradub, N., Tanida, K., Vsh ivkova, T. S., Wang, B., Yang, L., Yule, C. M. 2007. Freshwater Biomonitoring with Macroinvertebrates in East Asia. Frontiers in Ecology and the Environment. 5: 33-42
- Suren, A. M. 2000: Effects of Urbanisation. In: Hall, M. J., Gerhard, P. C., Ralph, H. R. 2001. Relationship Between Land Use and Stream Invertebrate Community Structure in a South Island, New Zealand, Coastal Stream Catchment. New Zealand Journal of Marine and Evaluation Description: 1703-1701.
- Winter, J. G., Duthie, H. C. 1998. Effects of Urbanisation on Water Quality Periphyton and Invertebrtate Communities in a Southern Ontario Stream. Canadian Water Resource Journal. 23: 245-257

