Editorial
Practicing Paediatric Pulmonology in South Africa - An honour and a privilege

- Prof Robin J Green

2

SATS news:
Call for applications/nominations:
GSK Pulmonology Research Fellowship
Cipla Travelling Lectureship
COPICON Congress 2011

5
7
11

NAEP South African Certificate in Asthma Care

24

Pulmonary Hypertension leading to heart failure secondary to respiratory diseases in children in developing countries; more awareness to avoid delayed diagnosis

- Marian Kwofie-Mensah

8

Asthma exacerbations - allergens or viruses?

- Debbie A White

12

Not all respiratory infections need antibiotics

- Dr Carla Els

17

International Pleural Newsletter

20

Congresses and CME events:
RSSA MDCT Essentials Course
COPICON Congress 2011

25
11

Product News

25
Editorial
Practicing Paediatric Pulmonology in South Africa – An Honour and a Privilege
Extracts from an Inaugural Address: Robin J Green

Professor and Head: Department of Paediatrics and Child Health University of Pretoria

In South Africa we live with the unenviable distinction of having the most individuals living with HIV infection and one of the highest rates of TB in the world. Whilst this is clearly undesirable it has provided us, in medicine, with a unique opportunity to treat children with both acute and chronic lung disease and to conduct research to improve their lot in life. In addition we have an asthma and allergic rhinitis prevalence today of 20%. That means that 1 in 5 children will have one of these conditions. We live then in a part of the world where we have an opportunity to treat children with the common infectious diseases associated with poverty (HIV and TB) as well as the diseases previously linked to affluence (asthma and allergic rhinitis). Having said this about these two atopic diseases it is no longer true that they occur in wealthy children. In 1979 Christo van Niekerk documented that the urban – rural gradient for asthma was 22. Meaning that asthma was uncommon in rural black children but becoming increasingly common in their urban counterparts. In two subsequent studies in later years this gradient has come down to 1.7 and 2. Asthma is now as common in rural African children as those living in cities. In fact more children in South Africa have asthma than are HIV infected. However this trend in prevalence is completely reversed in mortality. Very few South African children now die of asthma whilst HIV infection is the leading cause of death in South Africa (figure 1).

At the University of Pretoria we have been actively involved with research into HIV-related lung diseases and atopic conditions. Our research has uncovered diagnostic and management issues in the many conditions. Bronchiolitis is a disease of infancy and presents as the first episode of wheeze in HIV-infected and HIV-uninfected children alike. The mean age of bronchiolitis in HIV-infected children is 8 months as opposed to the HIV-uninfected children where the mean age is 5.8 months. HIV-infected bronchiolitics isolate the same viral organisms as the HIV-uninfected children, mainly RSV. RSV occurs from February to August annually although actual numbers and disease severity vary from year to year (Figure 2). Bacterial co-infection is a rare event and predicting bacterial infection is not aided by the measurement of C-reactive protein.

Many infants who have bronchiolitis go on to wheeze repeatedly with each new viral lower respiratory tract infection. They don’t have asthma. However our research work has demonstrated that in Africa the differential diagnosis of recurrent wheeze in infancy is much richer than in the Northern Hemisphere. We must add HIV infection and TB to this list (Figure 3).
My early research began with asthma. Together with David Layt we demonstrated that many asthmatics had their asthma diagnosis delayed. 50.1% of 299 asthmatic children had asthma symptoms for at least a year before asthma diagnosis was made (Figure 4). This delay led to significant impairment in quality of life as well as incurred costs for unnecessary antibiotics, home nebulisers and hospitalisations.

This impairment in quality of life is what makes asthma such an important disease to pulmonologists. In a study conducted with Gloria Davis and David Price of Aberdeen in Scotland, we documented significant quality of life impairment for South African asthmatics. All asthma guidelines tell us that the aim of asthma management is to return an asthmatic to normal life, free of symptoms and asthma exacerbations. We questioned over 3,500 patients and their doctors. Whilst 50% of patients thought they had asthma, surprisingly only 20% were being treated with anti-inflammatory therapy, today regarded as the only important asthma therapy for all asthmatics. In the remaining 710 individuals, disappointingly only 6-8% were well controlled (Figure 5). At least 20% had symptoms every day of life. This is completely unacceptable for asthma such an important disease to pulmonologists. In the northern hemisphere, this appears not to be the case in South Africa. There are many asthmatics who are well controlled, and this was encouraging because asthma is difficult to control because we don’t really know what ‘control’ means.

Allergic rhinitis is the other airway disease which has fascinated me. Since allergic rhinitis does not carry mortality risk the reason to treat this condition is to improve quality of life. As with asthma, we found that allergic rhinitis was causing significant impaired life. 76% of sufferers had impaired sleep and 33% of those every night of their lives (Figure 7). This study also revealed that allergic rhinitis in South Africa is a perennial condition. Hayfever is extremely common.

A final comment on asthma in South Africa is that whilst this condition is said to be allergy related in most children in this condition is said to be allergy related in most children in the remaining 710 individuals, disappointingly only 6-8% were well controlled (Figure 5). At least 20% had symptoms every day of life. This is completely unacceptable for asthma.

Dr Mike Greenblatt, Charles Feldman and I performed a similar study a few years later. In this study we attempted to define differences in asthma control as perceived by asthmatics and their doctors. Whilst 50% of patients thought they had asthma, surprisingly only 20% were being treated with anti-inflammatory therapy, today regarded as the only important asthma therapy for all asthmatics. In the remaining 710 individuals, disappointingly only 6-8% were well controlled (Figure 5). At least 20% had symptoms every day of life. This is completely unacceptable for asthma such an important disease to pulmonologists. In the northern hemisphere, this appears not to be the case in South Africa. There are many asthmatics who are well controlled, and this was encouraging because asthma is difficult to control because we don’t really know what ‘control’ means.

Allergic rhinitis is the other airway disease which has fascinated me. Since allergic rhinitis does not carry mortality risk the reason to treat this condition is to improve quality of life. As with asthma, we found that allergic rhinitis was causing significant impaired life. 76% of sufferers had impaired sleep and 33% of those every night of their lives (Figure 7). This study also revealed that allergic rhinitis in South Africa is a perennial condition. Hayfever is extremely common.

A final comment on asthma in South Africa is that whilst this condition is said to be allergy related in most children in the northern hemisphere, this appears not to be the case in
Adoptive

Environmental

Patient/Parent

Doctor

Finally we must recognise that the future of paediatric pulmonology rests on 3 pillars. The care of our patients is in the hands of patients themselves, their doctors and our health administrators who hold the purse strings (Figure 8). I am optimistic that as anti-retroviral roll-out continues many of the conditions we have been investigating should begin to disappear. This is most desirable. It has been a true honour …

Table 1
Severe/Very Severe Pneumonia in Pretoria (67% HIV-infected)

<table>
<thead>
<tr>
<th></th>
<th>Ward</th>
<th>PICU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age - Under 1 Year</td>
<td>79%</td>
<td>83%</td>
</tr>
<tr>
<td>Length of Stay (days)</td>
<td>8.7</td>
<td>9.4</td>
</tr>
<tr>
<td>Cost - Our Hospital</td>
<td>R2 798.98</td>
<td>R4 939.40</td>
</tr>
<tr>
<td></td>
<td>R2 035.44</td>
<td>R2 364.10</td>
</tr>
<tr>
<td>Cost - Private</td>
<td>R13 830.20</td>
<td>R41 091.90</td>
</tr>
</tbody>
</table>

With regard to severe pneumonia in HIV-infected children we have been experimenting with strategies to reduce mortality in PCP. Through the use of lung protective ventilation and addition of oral steroids and ganciclovir we have reduced mortality from 90% to 22%. We also wish to describe PCP as a new pulmonary syndrome with multiple overlapping aetiologies (Table 2).

Table 2
PCP is a Disease of Co-morbidities

- CMV
- Other respiratory viruses
- Bacteria
- Other

Bronchiectasis in Africa is increasingly commonly linked to HIV-related lung disease. However this epidemic has limited the differential diagnosis in many children who may have another cause for their disease. Cystic fibrosis (even in black children), congenital immune deficiency and primary ciliary dyskinesia remain important conditions. We report the successful use of routine daily macrolides in HIV-related bronchiectasis. There was a significantly elevated IgE in our study population. Previous studies in adults and children infected with HIV have shown a relationship between IgE and the staging of HIV. There does not appear to be any correlation between IgE level and the stage of HIV infection in our children. There was interestingly, also no increase in the correlation between IgE level and the stage of HIV.

There was a significantly elevated IgE in our study population. Previous studies in adults and children infected with HIV have shown a relationship between IgE and the staging of HIV. There does not appear to be any correlation between IgE level and the stage of HIV infection in our children. There was interestingly, also no increase in the correlation between IgE level and the stage of HIV.

With regard to passive smoke exposure we also found no relationship between this exposure and disease severity in HIV-infected children.

The value of the award is R10 000.

The awardee is requested to send the Chairperson of the SATS Scholarship Selection Committee a very brief report by the end of the following year on how the award was utilised (i.e. lectures given in which centres).

Most recent recipients of the award were:
- Prof Max Klein (2010)
- Prof Paul Wilcox (2009)
- Prof Mervyn Mer (2008)
- Prof Prakash Jeena (2007)
- Prof Elvis Iruen (2006)
- Prof Heather Zar (2005)
- Prof Gill Ainslie (2004)
- Dr Michelle Wong (2003)
- Prof Guy Richards (2002)

Previous recipients of the award were:
- Prof Nulda Beyers
- Dr Mike Plit
- Prof Charles Feldman
- Prof Umesh Lalloo
- Prof Rob Gie
- Dr Mike Greenblatt
- Prof Eric Bateman

Please send nominations to:
- Prof Gillian Ainslie
- Chairperson, SATS Scholarship Selection Committee
 Email: Gillian.Ainslie@uct.ac.za

Closing date for nominations:
- 1st November 2011
Pulmonary hypertension leading to heart failure secondary to respiratory diseases in developing countries; more awareness to avoid delayed diagnosis

Marian Kwofie-Mensah
Fellow Paediatric Pulmonology, Division Paediatric Pulmonology, University of Pretoria

Introduction

Pulmonary hypertension (PH) although commonly associated with cardiac conditions, is found to be associated with a wide variety of other conditions in children. The HIV epidemic and its association with respiratory diseases is a big contributor. The aetiology and management of PH has therefore become relevant in Paediatrics.

Definition

Pulmonary hypertension (PH) defined as mean pulmonary arterial pressure (Ppa) of greater than 25mmHg at rest or greater than 30mmHg with exercise, is applicable to both paediatrics and adults. This definition was confirmed at the WHO guideline meeting in Venice 2003. However, the definition was debated and challenged at the Fourth World Symposium on Pulmonary Hypertension in 2008 in Dana Point, California, USA and the new haemodynamic definition of PH is a Ppa at rest of greater than 25mmHg.

Cor pulmonale, by definition, is pulmonary hypertension associated with disorders of the respiratory system and or hypoxia and must be distinguished from idiopathic pulmonary arterial hypertension and other causes such as pulmonary venous hypertension and thromboembolic pulmonary hypertension.

Many of the studies conducted on PH are adult based, however many of the findings can be applied to children. Recent studies have shown that disruption of lung vascular growth impairs distal airspace structure during development and this usually contributes to the pathobiology of diverse lung diseases. These are some common chronic lung diseases which are known to cause PH outside the neonatal period and infancy (Table 1).

The common initiating factor leading to PH in these respiratory conditions is hypoxia and the mechanism needs to be understood and emphasised as it is associated with a poor prognosis and this can indeed help in the awareness and prevention of disease progression.

Mechanism of pulmonary hypertension due to hypoxia

It is well known that respiratory disease is one of the main contributors to the development of hypoxia. Pulmonary vasoconstriction is a basic reflex in response to hypoxia. When the lung is faced with high altitude or chronic hypoxic lung disease the reflex is operational and causes PH as a usual complication. PH is independently associated with increased morbidity and reduced survival in patients suffering from hypoxic lung disease and is both accompanied and caused by pulmonary vascular remodelling.

Our understanding of the pathophysiology is that the pulmonary vascular wall remodels. Normally this consists of three layers: adventitia, media, and intima, whose cellular components are fibroblasts, smooth muscle and endothelial cells, respectively. The remodelling of the pulmonary arteries (which is the structural change of the vascular bed) leads to an increase in pulmonary pressure due to increased resistance. Proliferation of adventitial fibroblasts increases within hours of hypoxic exposure and within a few days thickening of the media layer begins to develop. Hypoxia increases cell proliferation by inhibition (production and/or release) of antiangiogenic factors (e.g. Nitric oxide (NO) and prostacyclin (PGI2)) and by increasing mitogenic stimuli (e.g. 5-hydroxytryptamine, endothelin-1 (ET-1), platelet-derived growth factor (PDGF), vascular endothelial-derived growth factor (VEGF) and inflammatory mediators (e.g. interleukins (IL-6, IL-10) and monocyte chemotactic factor-1) from smooth muscle cells, fibroblasts, endothelial cells and platelets.

Endothelial cells produce vasoconstrictor prolifeative factors (ET-1, angiotensin II, thromboxane A2) and reduce production of vasodialatory, anti-proliferative mediators (NO) and prostaglandin (Table 1). Increased vasoconstriction is likely related to an imbalance between the imputed production of endogenous modulators including NO, PGI2 and others, and excessive production of vasoconstrictors, such as ET-1 and serotonin (5HT). These changes reflect endothelial cell dysfunction, which results from injury due to several mechanisms including hypoxia, haemodynamic stress, inflammation, oxidative stress and altered growth factor production.

Hypoxia also dramatically increases the level of Ca²+ in the cytoplasm of the smooth muscle cell (SMC) and has shown to modulate proliferation and growth as well as contraction of the SMC.

Disease progression

PH, if untreated results in right ventricular enlargement commonly known as cor pulmonale, which, with progression, leads to right heart failure.

This progression is mostly due to the response of the right ventricle (RV) to the increased afterload. It is the ability of the RV to adapt to the increase in afterload that determines both the degree and nature of adaptation. Adaption depends on the rapidity at which the increase in afterload occurs i.e. the degree of RV increase in mass. RV hypertrophy begins within several hours following the acute increase in afterload and therefore if the rate and magnitude of the increase in RV afterload outpaces the development of ventricular hypertrophy, RV failure ensues (Figure 1).

In an adult study conducted in Italy, it was found that chronic PH determines various adaptive changes one of which involves the right atrium (RA), but its exact role has never been investigated. It is hypothesised that the RA increases in volume and function to assist the RV during the chronic pressure overload due to the PH. The RA initiates the increased volume and systolic function prior to development of RV dilatation and systolic dysfunction. In the Italian study, the RA size was assessed in relation to clinical, echocardiographic and haemodynamic parameters in patients with PH and its enlargement is one of the independent predictors of adverse outcome in the setting of primary PH.

Diagnosis

Clinical presentation

Though of great importance, diagnosis can be difficult as the symptoms of PH are interconnected and may overlap with that of the chronic respiratory illness.

Symptoms commonly observed are reflected in Table 2.

Dyspnoea on exertion and fatigability is generally present in advanced chronic respiratory disease and that may prompt the clinician to investigate for the presence of PH. Some of the symptoms occur as a late sign e.g. peripheral oedema from right ventricular failure. The progression of PH is slow and patients may remain stable over many years.

Special investigations

Most patients with chronic lung disease should have a regular electrocardiogram (ECG) although the sensitivity is only 20-40% but specificity is higher. Doppler echocardiography is by far the best method. A summary of investigations recommended in the British Cardiac Society (BCS) Guidelines is shown in Table 3.

Most of these special investigations are only available in special centres and this contributes greatly to the delay in the diagnosis of these patients, especially in developing countries. Most of these patients are firstly managed in the primary or secondary health sectors for their chronic illnesses and emphasis on complications is seldom appropriate.

Table 1 Common respiratory illness/hypoxia causing pulmonary hypertension

Chronic obstructive airway disorders	Upper airway obstruction e.g. adenoids, webs
Asthma	Laryngo-tracheal malacia
Cystic fibrosis	Vascular rings

| Obstructive lung disorders | Asthma |
| Bronchiectasis |
| Bronchiolitis obliterans |

| Restrictive lung diseases | Neuro muscular diseases |
| Sleep disorders | Scoliosis/kyphoscoliosis |
| Progression of pulmonary TB |
| Interstitial diseases | Chylo dysexemia |
| Bronchopulmonary dysplasia |
| Other |

Pulmonary arterial hypertension

RV pressure load

RV systolic dysfunction

RV diastolic dysfunction

Tricuspid regurgitation

Diastolic ventricular interdependence

Further ? PVR

RV, right ventricle; HTN, hypertension; LV, left ventricle; PVR, pulmonary vascular resistance.

Table 2. Symptoms of PH

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breathlessness/dyspnoea</td>
</tr>
<tr>
<td>Palpitations</td>
</tr>
<tr>
<td>Chest pain (central)</td>
</tr>
<tr>
<td>Haemoptysis</td>
</tr>
<tr>
<td>Oedema</td>
</tr>
<tr>
<td>History of exercise induced syncope</td>
</tr>
<tr>
<td>Occasionally cyanosis</td>
</tr>
<tr>
<td>Failure to thrive</td>
</tr>
</tbody>
</table>

Figure 1. Pathophysiology of right ventricular failure due to pulmonary arterial hypertension.
Imaging investigations recommended for the assessment of PH

<table>
<thead>
<tr>
<th>Investigation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest radiography</td>
<td>May show increase in cardiac chamber or PA size, hyperperfused areas of lung and parenchymal lung disease.</td>
</tr>
<tr>
<td>ECG</td>
<td>May demonstrate RVH</td>
</tr>
<tr>
<td>Echocardiography</td>
<td>Screening tool of choice for PAH. Detects cardiac disease (congenital, myocardial, valvular, intra-cavity clot etc)</td>
</tr>
<tr>
<td>Cardiac catheterisation</td>
<td>Gold standard to define the extent of disease. PA pressures, PVR, cardiac output and oxygen saturations can be calculated accurately.</td>
</tr>
<tr>
<td>6 minute walk test (6MWT)</td>
<td>Provides a functional assessment of exercise capacity and degree of limitation of activity.</td>
</tr>
<tr>
<td>Arterial blood gases, lung function tests</td>
<td>May be useful, although in patients with IPAH the results of lung function tests may be normal. A decline in PaO₂ is typically seen.</td>
</tr>
<tr>
<td>Blood investigations</td>
<td>Essential to exclude connective tissue diseases or pulmonary hypertension secondary to systemic disease</td>
</tr>
<tr>
<td>CT pulmonary angiography (CTPA)</td>
<td>Used to look for enlargement of pulmonary arteries, filling defects and webs in the arteries.</td>
</tr>
<tr>
<td>Ventilation perfusion scanning</td>
<td>More sensitive for chronic pulmonary thromboembolism than CTPA but not helpful when there is underlying parenchymal disease.</td>
</tr>
<tr>
<td>High resolution lung CT</td>
<td>May show parenchymal lung disease, mosaic perfusion and features of pulmonary venous hypertension.</td>
</tr>
<tr>
<td>Cardiac MRI</td>
<td>Good investigation for imaging the right ventricle. Helpful in delineating congenital heart defects.</td>
</tr>
<tr>
<td>Abdominal ultrasound</td>
<td>Used for investigation of liver disease and suspected portal hypertension.</td>
</tr>
<tr>
<td>PA - pulmonary artery; RVH - right ventricular hypertrophy; PAH - pulmonary arterial hypertension; PVR - pulmonary vascular resistance; IPAH - idiopathic pulmonary arterial hypertension</td>
<td></td>
</tr>
</tbody>
</table>

In developing countries most of our focus is on the preventative management and very little focus is given to possible complications and their management. It is essential that a campaign of awareness is conducted in order to prevent disease progression and improve the quality of life of patient.

There are also other setbacks which are due to barriers and challenges that are experienced in our health system. Some of these barriers to consider are:

- Limited infrastructure and resources
- Lack of trained staff to assess and identify condition
- Unavailable multidisciplinary approach
- Understanding of the complexity and pathophysiology of the condition
- Poor organisation and communication across paediatric care centres and late referrals
- The vague presentation of the disease itself
- Cultural beliefs that always interfere with early diagnosis and management
- Poor education (poor adherence and compliance to treatment)

Management

The management of PH has been in constant evolution and changes in the treatment still target the steps involved in the pathophysiology such as ET-1 receptor inhibitors.

With our understanding that hypoxia is the greatest initiating factor, our main focus should still be on its prevention. This is certainly possible, even in developing countries, as the timing of pulmonary vascular injury is a critical determinant of the subsequent response of the developing lung to adverse stimuli e.g. hypoxia, inflammation. This highlights the importance of saturation monitoring on a regular basis to identify deterioration and alert the clinician to the risk of PH and should be emphasised in all primary and secondary sectors of health care. Home oxygen support may be needed and should be started as early as possible. This will help decrease the need for additional medicines for children who are already burdened by multiple drug therapies such as those for HIV.

Conclusion

Pulmonary hypertension in children contributes significantly to morbidity and mortality. Severe exacerbations of chronic respiratory disease, worsens hypoxia and this simultaneously compounds the increase in pulmonary pressures. If not managed appropriately and acutely this favours the development of right ventricular failure with poor outcome. Therefore continued effort is necessary to optimise strategies that improve the impact of respiratory disease on the heart.

References

Asthma exacerbations – allergens or viruses?

Debbie A White
Division of Paediatric Pulmonology, University of the Witwatersrand and University of Pretoria

Introduction

For many asthmatic patients (both adults and children), the disease is characterised by periods of good control of symptoms, interrupted by a series of exacerbations. The cause of such exacerbations is hotly debated. Sensitisation to allergens is a risk factor for asthma, but there is now a significant body of evidence that allergens are in fact, not responsible for asthma exacerbations and that advances in respiratory tract virus detection have allowed clear demonstration of the important link between viral infection and asthma exacerbations. There is no universally accepted definition of an exacerbation of asthma although the Global Strategy for Asthma Management and Prevention 2009 defines it as ‘acute or subacute episodes of progressively worsening shortness of breath, cough, wheezing and chest tightness – or some combination of these symptoms’. The underlying problem is inflammation, with concomitant bronchoconstriction.1

Asthma Pathophysiology

Allergy was thought to play a central role in asthma pathogenesis, and even though it still does, it seems as though less than 40% of all asthmatics in South Africa are sensitised to allergens is a risk factor for asthma, but there is now a significant body of evidence that allergens are in fact, not responsible for asthma exacerbations and that advances in respiratory tract virus detection have allowed clear demonstration of the important link between viral infection and asthma exacerbations. Sensitisation to allergens involves antigen-presenting cells (APCs), TH1 cells (which interact with allergens on APCs in conjunction with MHC II epitopes), B cells (which respond to TH1 cytokines and become specific IgE producing plasma cells), IgE (specific to that initial stimulating antigen) and mast cells (to which IgE binds). Eosinophils and other inflammatory cells are subsequently recruited. The process is largely orchestrated by the cytokines (intracellular messengers) IL-3, IL-4, IL-5, IL-13 and GM-CSF. On allergen re-exposure, antigens cross-react with mast cell-bound IgE and degranulation of mast cells occurs. This process, and the release of the inflammatory mediators, facilitates the atopic inflammatory disease process seen in many organs.2 (Figure 1).

In an asthmatic individual the process of inflammation results in airway hyper-responsiveness followed by variable airway obstruction and finally symptoms i.e cough, wheeze, tight chest and shortness of breath.3

Allergens and asthma exacerbations

Sensitisation to allergens is a risk factor for asthma. At a biennial congress of the World Allergy Organisation, Buenos Aires 6-10th December 2009, a proclamation of the Asthmatic Children’s Charter was made that states “allergy is clearly not only a trigger for asthma exacerbation, particularly interacting with viral infection, but also the more severe the asthma the higher the probability of allergy being a significant contributor. The majority of patients with asthma experience rhinitis symptoms, and allergic rhinitis commonly precedes asthma exacerbation, increasing the risk of asthma attacks, emergency visits and hospital admissions for asthma. Sensitisation to inhalant allergens is a risk factor for wheezing. Early onset asthma is a strong predictor of occurrence of a persistent disease”.7,8 Wehrly et al.,9 report that the risk of asthma after a viral lower respiratory tract infection (RTI) is increased in the presence of allergic sensitisation in early life, and if the infection is more severe. Atopy-associated mechanisms also appear to be involved in viral-induced acute exacerbations of asthma, especially in prolonging symptomatology after the virus has been cleared from the lungs.10

200 000 of the 450 000 emergency department adult asthma admissions per year in the United States have been attributed to the risk associated with sensitisation to mite, cat or cockroach allergen.11 In an American study of inner city children with asthma, those who were sensitised and highly exposed to cockroach allergen were more likely to be hospitalised with their asthma. They also had more unscheduled medical visits, and had more time off school compared with either the nonexposed or the nonsensitized.12 Among children admitted to hospital with an acute attack of asthma in the United Kingdom, those who were sensitised and exposed to dust mite were at increased risk of readmission during the following month.7

Some sources report that after 3 years of age, viral RTIs and allergy synergistically increase the risk of acute wheezing and exacerbations of childhood asthma.5,9

Viruses and asthma exacerbations

Viral RTIs are one of the most common illnesses in human subjects, with 500 million cases and an economic burden estimated at $40 billion annually, in the United States alone.10 Since the early 1970’s, viral RTIs have been reported as triggers for exacerbations of asthma in both adults and children.7 Virus-induced wheezing in infancy is associated with an increased risk for recurrent wheezing as children grow older.13 It is important to note the fundamental question of whether these viral respiratory tract infections are causal for exacerbations or instead serve as indicators of a predisposition to asthma is still unresolved.14

Advances in respiratory tract virus detection have led to critical new insights into the development and exacerbation of asthma. Previously, respiratory tract viruses were difficult to detect by using conventional methods because some do not grow well in culture.15 In vitro studies of acute viral illnesses, detection rates of 30-50% were the norm with techniques such as viral culture, antigen detection (with labelled antibodies) or serologic detection. More recently, molecular techniques have greatly improved overall rates of viral detection, e.g., polymerase chain reaction (PCR), multiplex PCR, sequencing and microarrays, and some studies of acute respiratory tract illnesses have reported viral detection rates of as high as 90%, especially in infants.16

Of the respiratory tract viruses identified in these circumstances, human rhinoviruses (RV) are the most commonly found and are detected approximately 65% of the time1 especially in children over the age of 2 years.17

In addition to RV, other respiratory tract viruses such as respiratory syncytial virus (RSV), influenza viruses, coronaviruses, human metapneumoviruses, paramyxoviruses, adenoviruses and bocaviruses, have all been detected in subjects with asthma exacerbations.18 A caveat with regard to these dramatically improved PCR-based methods of viral detection is that with increased sensitivity in detecting viral genetic material in the host, the prevalence of viral infections is not necessarily associated with clinical illness.19 This is particularly true for RV, which can be found in a considerable proportion of healthy subjects. Studies using sequential sampling in children indicate that detection of RV in well children represents asymptomatic infection. Therefore it has been important to link symptomatic illnesses, particularly wheezing illnesses, with RV detection and estimating its role in determining asthma risk. Chronic infection with RV does not occur except in association with marked immunosuppression.20

Asthma exacerbations – allergens or viruses?

Asthma exacerbations are desperately needed.11 The most obvious therapeutic advancement in the management of acute exacerbations of asthma is the development of humanised monoclonal antibody (mAb) against the RSV fusion protein, is the only US Food and Drug Administration-approved mAb for RV.21 The results of two nonrandomised studies of passive immunisation to RSV in early life suggest that preventing severe RV infection in infancy with mAb might reduce subsequent RV illness.22

Safe antiviral agents might eventually become as important as antibiotics in the management of lower respiratory tract infections and a variety of novel therapeutics are at various stages of development.
Not all respiratory infections need antibiotics

Dr Carla Els
Paediatric Pulmonologist, Department of Paediatrics and Child Health, University of Pretoria

Introduction

In the current era of antibiotic stewardship a difficult and important management decision for most practitioners is whether to treat a respiratory tract infection with an antibiotic or not and if so, which one to use. Frequent and inappropriate antibiotic use for respiratory tract infections has contributed to the emergence of resistant bacterial species. Not only does inappropriate antibiotic use lead to increased colonisation by resistant organisms, recent antibiotic use increases the risk of contracting invasive disease caused by these resistant organisms.3

The challenge for all practitioners is to try and determine the microbiology of an infective episode and to answer the question; ‘Is the infection viral or bacterial or a mixture of both?’ This answer will determine whether or not the patient needs an antibiotic, since most respiratory infections are self limiting and will resolve without antibiotics. Besides the factors discussed above, which determine a practitioner’s course of action, there are specific clinical factors (Table 1) which will influence the decision to prescribe an antibiotic.3

Making these difficult choices requires clear definitions and guidelines. Defining whether an infection is of the upper or lower respiratory tract, using symptoms and signs to predict the microbiology and using current literature (both local and international) to develop new or use existing guidelines, is critical in managing these infections appropriately.

Defining upper versus lower respiratory tract infection (RTI)

Figure 1 provides a schema for differentiating an upper from lower RTI.

Clinical features of upper respiratory infections:

1. Common cold:

 Nasal stuffiness, sneezing, coryza, throat irritation, with or without fever. Mucopurulent rhinitis usually occurs with a common cold. Common colds can occur 3-8 times per year, even in healthy children, and sometimes more if the child attends school or day care.

Table 1 Non-clinical factors influencing the decision to prescribe antibiotics

| 1. Time pressures |
| 2. Wanting to do something active and sign positive |
| 3. Medical-legal concerns |
| 4. Fear of losing patients to other doctors |
| 5. Satisfying parents |
| 6. Protocol of day care requiring antibiotics for return of an ill child |

2. Otitis media:

Acute otitis media (AOM) must have an acute onset of symptoms and signs consistent with inflammation of the middle ear. These include erythema and or a bulging yellow tympanic membrane, tenderness, pain, fever and effusion of the middle ear. However, these symptoms and signs, associated with AOM, have poor sensitivity and specificity. It is extremely important to distinguish between AOM and otitis media with an effusion (OME). OME is a middle ear effusion not accompanied with other clinical signs or symptoms. OME usually follows on a viral upper respiratory infection or AOM and may persist for weeks or months.6

3. Sinusitis:

Acute sinusitis is a clinical diagnosis. Prolonged, non specific upper respiratory tract signs and symptoms occur. Nasal congestion, nasal discharge and a cough with no improvement for more than 10-14 days or fever >39°C Celsius, facial swelling and facial pain define acute sinusitis.9 Radiological sinus changes does not correlate well with clinical signs. This prolonged period of non specific upper respiratory signs are based on the principle that a viral infection, like a common cold, will usually last for about 9 days.11

4. Pharyngitis:

Sore throat due to erythema, edema or ulceration involving the nasopharynx, uvula, soft palate, or tonsils, swollen lymph nodes, tender posterior pharyngeal wall, pain on swallowing, fever with or without pharyngeal exudate, scarlatiniform rash with less cough, rhinorrhea and conjunctivitis.

The positive predictive value for a Group A streptococcal infection with these features is less than 50%.10,11

How to manage these infections - using guidelines and the current literature:

Common cold:
Rosenstein et al.,2 in controlled trials of antimicrobial treatment for the common cold, demonstrated that antibiotic treatment did not change the clinical course or outcome. Mucopurulent rhinitis is not an indication for antibiotics unless it persists for more than 10-14 days. A Cochrane review did however, reveal a benefit if antibiotics are used in chronic purulent rhinitis.15

AOM:
The rate of resolution AOM without antibiotics has been demonstrated to be 81% and given the common viral aetiology it could be argued that antibiotics should not routinely be given or given an initial wait and see period.14 This may be advocated if factors provide for adequate patient follow up and should be reserved for children older than 2 years of age.15 OME does not require initial antibiotics but if the effusion persists for more than 3 months antibiotics might be considered. Prophylaxis is reserved for recurrent AOM; more
than 3 episodes in 6 months or 4 episodes in 12 months. Sinusitis: Nasal congestion, nasal discharge and a cough with no improvement for more than 10-14 days or fever greater than 39 degrees Celsius, facial swelling and facial pain are indications for antibiotics. In radiological confirmed acute maxillary sinusitis antibiotics may be used.

Pharyngitis: A Cochrane review found small differences between delayed or immediate antibiotic use for a sore throat. The UK Cochrane review found small differences between delayed:

- Nasal congestion, nasal discharge and a cough with no improvement for more than 10-14 days or fever greater than 39 degrees Celsius, facial swelling and facial pain are indications for antibiotics. In radiological confirmed acute maxillary sinusitis antibiotics may be used.

- Pharyngitis: A Cochrane review found small differences between delayed or immediate antibiotic use for a sore throat. The UK Cochrane review found small differences between delayed:

- Sinusitis: Nasal congestion, nasal discharge and a cough with no improvement for more than 10-14 days or fever greater than 39 degrees Celsius, facial swelling and facial pain are indications for antibiotics. In radiological confirmed acute maxillary sinusitis antibiotics may be used.

- Pharyngitis: A Cochrane review found small differences between delayed or immediate antibiotic use for a sore throat. The UK Cochrane review found small differences between delayed:

- Sinusitis: Nasal congestion, nasal discharge and a cough with no improvement for more than 10-14 days or fever greater than 39 degrees Celsius, facial swelling and facial pain are indications for antibiotics. In radiological confirmed acute maxillary sinusitis antibiotics may be used.
Chylothorax

Aetiology of Chylothorax

Fabien Maldonado MD
Jay H Ryu MD

Mayo Clinic, Rochester, MN, USA
maldonado.fabien@mayo.edu

Chylothorax represents an uncommon type of pleural effusion with distinctive features. It is defined by the presence of chyle in the pleural cavity, which is a type of lymphatic fluid enriched in lymphocytes (particularly T-lymphocytes), immunoglobulins, and lipids that are absorbed by the digestive tract. The thoracic duct transports the chyle from the cisterna chyli into the circulatory system, usually via the right subclavian or subclavian veins. Between the cisterna chyli and the central venous system, the thoracic duct runs in close proximity to various anatomical structures including the oesophagus, lungs, aorta, vertebral and lymph nodes. Direct physical processes or mechanical injuries involving these structures may result in disruption and/or obstruction of the thoracic duct and/or its tributaries, resulting in leakage and accumulation of chylous fluid in the pleural cavity.

Traumatic injuries to the thoracic duct represent 50% of all causes of chylothorax compared to 25% in older studies. Thoracic surgical procedures, particularly oesophagectomy, represent the vast majority of these traumatic cases, although neck surgeries and complications associated with percutaneous procedures, such as placement of central venous indwelling catheters or other devices (e.g. pacemaker), have also been described. By contrast, lymphomas, previously the most common cause, only account for 10% to 12% of all chylothoraces in recent studies. This may be due, in part, to earlier diagnosis of lymphoma and the availability of effective chemotherapy that may decrease the rate of complicating features, such as chylothorax. There are many unusual causes of chylothorax including cirrhosis, fungal infections, tuberculosis, sarcoidosis, congenital or acquired lymphatic malformations (lymphangiomatosis, lymphangiectasias, lymphangioleiomyomatosis, Noonan syndrome, yellow nail syndrome and Down syndrome), central venous thrombosis, chest radiotherapy, goitres, heart failure and connective tissue diseases. Anecdotal cases of chylothorax have been described after seat-belt injuries from motor vehicle crashes, movements of neck hyperextension or even forceful sneezing and childbirth delivery. In approximately 5% of cases, a specific cause cannot be determined and the chylothorax is then labelled as idiopathic.

It should be emphasized that the diagnosis of chylothorax may not always be straightforward. The classical milky appearance of chyloous effusions is only present in less than one-half of cases and is typically not seen when the patient is fasting or malnourished. In a recent study, the pleural fluid triglyceride level was <110 mg/dL in 15% of patients with chylothorax, and even <50 mg/dL in some cases. Likewise, chylothorax can be transudative, as in cases associated with protein hypoproteinemia, pleural fluid and lipid characteristics. They represent a form of lung entrapment with an active pleural process, and are neutrophilic, concordant exudates with a cholesterol level of ≥250 mg/dL (range 300-1500 mg/dL) and a cholesterol/triglyceride ratio >1.0.

The diagnosis of a chylothorax is suspected when the fluid is milky. However, this diagnosis can also be observed with a cholesterol effusion. Cholesterol effusions have a different pathogenesis, clinical presentation, and pleural fluid characteristics. A pleural effusion with a cholesterol level of <110 mg/dL and highly unlikely if the pleural fluid triglyceride level is <50 mg/dL. The presence of chyliocytes confirms the diagnosis. However, the patient who is fasting may have low triglyceride levels and chyliocytes may not be detected.

A chylothorax develops when the thoracic duct or one of its large tributaries ruptures allowing chyle to flow into the胸腔 fluid. The thoracic duct travels from its origin in the cisterna chyli to the aortic hiatus of the diaphragm, at the level of the tenth thoracic vertebrae, to the right of the aorta. At the level of the fifth or sixth thoracic vertebrae, the duct enters the left posterior mediastinum and eventually joins the veinous circulation at the junction of the left subclavian and internal jugular veins. Therefore, rupture of the thoracic duct below T5 to T6 results in a right-sided chylothorax, whereas injury to the duct above this level results in left chylothorax.

Chylothorax is an uncommon (2-3% incidence) cause of pleural effusion. On pleural fluid analysis, the fluid is white and opaque if it is present; however, the fluid can be clear yellow in the neonate who has not yet ingested milk, serous in the adult who has not eaten for 12 hours, or haemorrhagic if trauma is involved. The supernatant of a chylothorax fails to yield simple centrifugation. T-lymphocytes are the primary cells in chylo, typically representing >80% of the cellular population. The total nucleated cell count ranges from 400 to 6,800 cells/μL. Chyle is typically a protein discordant exudate (i.e. an effusion with a pleural fluid to serum protein ratio >0.5 and pleural LDH concentration less than two thirds of the upper limit of the normal serum LDH value) with pleural fluid protein ranging from 2.2 to 5.9 g/dL. Since chyle is non-inflammatory, the LDH is in the normal range, virtually always <268 IU/L. The electrolytes in chyle are similar to plasma. Chylos fluid has been reported to have a pH ranging from 7.40 to 7.80 and a glucose concentration of 78-200 mg/dL. Measurement of the pleural fluid to serum glucose ratio assists in differentiating a chyloous effusion (ratio <1.0) from pleural fluid attributable to the extra-vascular migration of a central venous catheter in patients receiving total parenteral nutrition, which contains lipids and glucose (ratio >1.0).
based contrast agents intradurally or subcutaneously at a distal extremity, but experience is limited to animal studies and this technique has not yet been routinely. Fluid-sensitive sequences such as half-Fourier single-shot turbo spin-echo (HASTE) sequences may also be used for visualisation of the *cisterna chyli* and the thoracic duct without need for gadolinium based contrast agents. However, spatial resolution of these techniques is limited compared to conventional lymphangiography.

Treatment of chylothorax due to thoracic duct injuries can be performed with chest tube drainage and maintenance of a low-fat diet. However, high output chylothorax may not respond to conservative management and may require intervention. Traditionally, surgical thoracic duct ligation has been performed. More recently, percutaneous imaging guided access to the thoracic duct allows for less invasive treatment modalities. Thus, access to the *cisterna chyli* may be obtained under fluoroscopy after bilateral pedal conventional lymphangiography to opacify the thoracic duct or under CT guidance without need for conventional lymphangiography.1,4,5

CT guided percutaneous transabdominal puncture, catheterisation of the *cisterna chyli* and injection of water-soluble iodine contrast allows for diagnosis and treatment of thoracic duct injuries. If catheterisation and embolisation fails, needle disruption of the *cisterna chyli* can be performed to create a controlled leak which may divert lymph flow from the damaged thoracic duct to collateral vessels. However, disruption may be less successful than embolisation.1,4,5

An illustrative case is that of a 68-year-old male patient with persistent chylothorax after an oesophagectomy due to oesophageal cancer. A percutaneous CT guided access to the *cisterna chyli* with a 21-gauge needle was performed (left, arrow).

Fluoroscopy, after injection of water-soluble iodine contrast agent into the *cisterna chyli*, showed the thoracic duct abruptly ending at the T8-T9 level (middle, arrow). Utilizing the Seldinger technique, a microcatheter was advanced over a hydrophilic guidewire into the thoracic duct, which was embolised with multiple radioopaque micro coils (right).

Surgical Management of Chylothorax

Subrato Paul MD

New York Presbyterian-Weill Cornell Medical College, NY, USA

pas2022@med.cornell.edu

Regardless of its aetiology, chylothorax represents a difficult problem that is potentially life-threatening if not dealt with promptly. A persistent high output drainage of chyle is associated with malnutrition and immunosuppression and consequent poor long-term outcomes.

The management of chylothorax is dependent upon both the aetiology as well as its duration and degree. Conservative management with dietary restriction of fat and intravenous hyperalimentation may be appropriate for low output chyle thoraces (<1L/day). The administration of octreotide may also be of some benefit. On the other hand, persistent high output chyle thoraces typically cannot be managed with conservative measures and may require some form of intervention, each being tailored to the particular clinical situation at hand. Interventions may include surgical pleurodesis/pleurectomy, operative thoracic duct ligation and/or percutaneous access to the thoracic duct to either fenestrate or embolise it.

Primary thoracic duct ligation, with or without pleurodesis, is the ideal intervention for postoperative patients who have intragraft thoracic duct injury. Additional intervention for chylothorax should be contemplated when persistent chest tube output is greater than 1L/day. Further delay will only worsen the metabolic and immunological derangements from persistent chyle leak and may delay recovery. In centres where percutaneous embolization of the thoracic duct is routinely performed, radiological techniques may supplant initial operative intervention.

Surgical ligation of the thoracic duct requires knowledge of its anatomy. The duct originates at the *cisterna chyli* in the abdomen and enters the chest at the aortic hiatus anterior to the vertebral bodies and posterior to the aorta. It then ascends in the right chest along the anterior surface of the vertebral bodies between the aorta and aryzgo vein. It finally crosses over to the left side at the carina and drains into the junction of the left jugular and subclavus veins. However, numerous variants exist. Injury of the thoracic duct at any location along its course can lead to chylothorax. Since successful surgical ligation requires identification of the proximal thoracic duct in the right chest, orally administering cream 24 hours prior to surgical exploration often aids in this procedure. If identification is not possible, then mass pleurodesis of all tissues anterior to the oesophagus and between the aorta and aryzgo vein should be performed. Thoracic duct or mass ligation, using sutures or clips, can be performed through a low right thoracotomy (7th interspace), as well as by videoassisted techniques (VATS). Additionally, chemical pleurodesis with talc or pleurectomy can be performed to facilitate pleural symphysis. Our practice has been to use these measures as adjuncts to thoracic duct ligation for high output chyle thoraces in the post-surgical setting.1 Primary chemical pleurodesis, performed either at the bedside through a chest tube or via VATS, can be effective in sealing persistently low output chyle thoraces, such as those caused by lymphoma or other malignancies, in combination with conservative measures as previously outlined.

In summary, chylothorax arises from a variety of aetologies. Prompt diagnosis and treatment is required to prevent life threatening malnutrition and immunosuppression. Low output chyle thoraces can often be managed with conservative measures, whereas high output chyle thoraces requires either surgical intervention or radiological techniques.

PLEURAL IMAGES

Chylothorax due to Retrosternal Goitre

Silvia Bielsa MD

Pilar Vicente de Vera MD

José M Porcel MD

FCCP FACP

Arnau de Vilanova University Hospital, Lleida, Spain

silviabielsa@hotmail.com

An 86-year-old woman was evaluated for progressive dyspnoea. Upon examination she was found to have decreased breath sounds at the right lung base and mild pedal oedema. A chest radiograph disclosed an enlarged cardiac silhouette and a right-sided pleural effusion. An echocardiogram demonstrated an ejection fraction of 35%.

Since the pleural effusion did not disappear with diuretics within a few days, a diagnostic thoracentesis was performed. The pleural fluid was milky and its analysis showed: erythrocytes 2,000/μL, leukocytes 250/μL with 92% lymphocytes, total protein 2.5 g/dL (serum 6.3 g/dL), lactate dehydrogenase 106 IU/L (serum 325 U/L), pH 7.53, adenosine deaminase 13.8 IU/L, triglycerides 340 mg/dL, cholesterol 20 mg/dL, negative cultures and no malignant cells on the cytological smear. The thyroid-stimulating hormone level was lower than 0.01 μU/mL and the free thyroid (T4) level was 57 mg/dL.

The chest CT showed a large retrosternal multinodular goitre (Figures, asterisk) with mass effect on large vessels (e.g., brachiocephalic veins) and thoracic lymphatics as noted by the presence of right-sided venous distension on the chest wall (Figure above, arrows) and pleural effusion.

The symptoms were partially relieved by a therapeutic thoracentesis of 500 mL. Due to the patient’s age and comorbidities, goitre surgery was not a consideration. The patient passed away two weeks after hospital discharge.

The South African Respiratory Journal is distributed free of charge. Should you wish to receive future editions and have not yet completed a registration card, please complete the card in this edition and return it to the address below or email your details to sarj@afircan.com.

The South African Respiratory Journal

P O Box 16433

VLAEBERG

8018

Any correspondence to the Editor or articles for submission should be sent to the same address or via email to: sarj@afircan.com

The website of the South African Thoracic Society can be found at: www.pulmonology.co.za
South African Certificate in Asthma Care
For nurses, pharmacists, physiotherapists, clinical technologists and doctors

REGISTER NOW!

- A six month distance learning course commencing in March and ending in September each year
- The course provides for self-assessment at the end of each module and participants are required to complete a written assignment at the end of Module 5
- Study materials consist of a study file with 5 training modules and a training video/DVD
- Two training days are held at centres around South Africa during May and September
- Final assessment in September comprises:
 - Two written papers
 - An oral examination

Cost of course is R4000.00 per candidate
A R1000.00 deposit secures your place
A limited number of scholarships can be applied for

Tel: 0861 ASTHMA [278462] Fax: 086 655 0809 E-mail: naepr@netactive.co.za

www.asthma.co.za

South African Respiratory Journal Vol 17 No 1
A study announced on 15 May 2008 by Bayer Schering Pharma AG, a leading global pharmaceutical company, shows that the FOXAIR MDI* is indicated in the regular prophylactic treatment of atopic asthma in children and adults, who have been stabilised on identical dosages of the components of FOXAIR given concurrently.

Foxair 25/125 Inhaler R168

Foxair Metered Dose Inhaler (MDI*)

Avelox® monotherapy shows strong performance in hospitalising treated pneumonia patients

Bayer

Berlin, Germany, 15 May, 2008 — A recently published study in Clinical Infectious Diseases shows that Avelox® (moxifloxacin HCl) monotherapy is as potent as a high dose combination regimen of ceftriaxone levofloxacin in the treatment of hospitalised patients with community-acquired pneumonia (CAP). A total of 569 patients at 69 centres in 17 countries, including South Africa, were treated in the MOTIV* trial (Moxifloxacin Treatment IV). The prospective, multicentre, randomised, double-blind, non-inferiority study, was sponsored by Bayer Schering Pharma and assessed by three independent committees of international experts.

“The results of MOTIV reinforce that moxifloxacin is an effective and well tolerated therapy for CAP patients in the hospital setting,” said Dr. Antoni Torres, Professor of Pulmonology at the University of Barcelona (Spain) and one of the lead investigators of MOTIV.

CAB including the major centres of malaria and mobility in developed countries. In fact mortality rates ranging from 4% to 14% have been reported for patients requiring hospitalisation.1,2 In up to 50% of all hospitalised CAP patients, the causative pathogen is Streptococcus pneumoniae3,4 Moxifloxacin, has excellent activity against S. pneumoniae, along with the additional advantage of once daily dosing.

About MOXIRAPID

The per protocol (PP) population of MOTIV consisted of 569 patients, 291 in the moxifloxacin and 278 in the comparator arm. Patients in the moxifloxacin arm received sequential intravenous (IV)/oral moxifloxacin 400mg once daily. Patients in the comparator arm received IV cefotaxime 2g twice daily plus IV levofloxacin 500mg twice per day and later be switched to oral levofloxacin 500mg twice daily. Both groups were treated for a total of 7-14 days. At the test-outcome assessment, there was no significant difference in the clinical care rates obtained with the two treatments (98.9% moxifloxacin vs. 94.0% comparator group; 95% CI -8.1-2.2) – irrespective of the severity of pneumonia. Both regimens were well tolerated and there were no significant differences in the incidence of adverse effects or mortality between both treatment arms.

Reference:
1. IMS Data, December 2010

© Bayer Schering Pharma AG 2008. All rights reserved.

Cipla Medpro is proud to announce the launch of Neotrician, the first affordable and effective algorithmic gold standard, 100% Free Amino Acid infant formula for cow’s milk protein allergies, in South Africa.

Neotrician does not contain any non-nutritive sweetener and is gluten free.

Neotrician is manufactured in an HACCP/SIO certified facility under strict GMP conditions. The protein source is of plant origin. Neotrician is certified microbiologically safe.

Neotrician is not available on any non-nutritive sweetener and is gluten free.

Cipla Medpro 400 (g) are available from hospital and retail pharmacies across the country.

Recommended Selling Price is R198.13 (incl. VAT)

For further information, please contact:
Karen de Klerk, RD (SA), Marketing Manager, Respiratory Division, Cipla Medpro
Tel.: (021) 917-5620 or
E-mail : karendk@ciplapharmapro.com

Neotrician is a 100% Free Amino Acid (Elemental) infant formula

“SO YA been unable to follow the treatment algorithm for cow’s milk protein allergy, due to the high cost of free amino acid formulae”
You can make the difference in a smoker’s life

Tobacco is the only legally available consumer product, which kills people when it is used entirely as intended.1

Smoking is one of the major contributors to South African deaths. 22% of South African adults (≥ 18) smoke and every day 55 die as a direct result from it.2 On average, smoking reduces lifespan by 15 years and kills up to one in every two users.1

Nicotine addiction is the reason so many smokers keep smoking even when they want to stop.3,4,5,6 In South Africa 68% of smokers have tried to stop smoking an average of 3.5 times7 but only 5% succeed without help.8 82% of smokers in South Africa agree that the doctor is a great resource to them when stopping.2

Your advice, pharmacotherapy and behavioural support increases your patients’ chances of stopping successfully.9 It will only take 5 to 10 minutes to advise smokers to stop and offer intervention.9

A soon to be launched product provides you with the opportunity to make a difference in the smoker’s life.

References: