Concepts of radionuclide therapy science and practice

John Buscombe

What is radionuclide therapy

- Different terms used
- Unsealed sources
 - Defined for radiation protection and legal reasons
- Internal radiotherapy
 - Could be confused with radioactive seeds and wires
- Targeted (radio) therapy
 - Much liked by NM community but may be confusing

General principles

- If you can see it you can treat it
- If the patient has the right disease you can treat it
- You can image the patient to see you have targeting-gamma only
 High activity in the target tissues, low in
- other tissues

What can these therapies offer?

- Cure-maybe
- Tumour control-sometimes
- Symptom control-frequently
- Side effects-sometimes
- Patient intolerance-rarely
- Hope-always

Who can we cure?

 This category includes one of the oldest treatments and one of the newest
 I-131 can be used to ablate thyroid remnants and treat metastatic disease
 Y-90 Tiuxetan ibrtumumab (Zevalin) can "cure"follicular non-Hodgkins Lymphoma

Types of treatment

- P-32
- I-131
- I-131 MIBG
- I-131/Re-188 Lipiodol, Y-90 Sir spheres, Re-186/8 Ho-166 MAA
- Lu-177/Y-90 Octreotate
- I-131 Bexxar, Y-90 Zevalin, I-131 Ritux
- I-131 CHT25
- I-131 SIP
- Sm-153 EDTMP/Sr-89/Re-188/Re-186 HEDP/Sn-177m/ Ra-223
- Y-90/Re-186/Er-169 colloids

- PCV, Cavity therapies
- Thyrotoxicosis, thyroid cancer
- NETs
- HCC
- NETs
- Follicular NHL
- Hodgkin's disease
- Solid tumours
- Palliation of bone pain, treatment of bone mets
- synevectomy

Changes in supplier

- 1988
- P-32 Amersham
- I-131Amersham
- I-131 mIBG Mallinckrodt
- Y-90 colloids Amersham
- Sr-89 Amersham

- 2010
- P-32 Polatom
- Y-90 Dotatate/toc
 Polatom/Perkin Elmer,
 Molecular imaging
- Lu-177 Dotatate Covidien
- Y-90 Zevalin Bayer
- Ra-223 Bayer
- I-131 SIP Philogen

Change in attitude

- Small market
- Limited use
- Except for I-131 palliation only
- Single agent

- Small but growing market
- Use expanding to more common conditions
- Aim for cure
- Combination with chemo/immunotherapy

63 year old women 6 weeks after total thyroidectomy **Spot views** performed 72 hours after administratio n of 140 MBq of I-131

Imaging performed 72 hours after administration of 3.5 GBq of I-131

After 3 further treatments of 5GBq of I-131, whole body imaging with 140MBq of I-131 fails to show any uptake in tumour and TBG is normal and remains so

Can we control disease

P-32 in polycythaemia rubra-vera I-131 mIBG in neuroblastoma I-131 Lipiodol in HCC RIA in lymphoma

P-32

- Biological half life in marrow is 8 days
- Beta emitter most radiation in 3-8 mm
- Cheap isotope
- Given as 74-114 Mbq/m² to max 185 MBq
- Marrow dose 2.2mGy/Mbq
- No special rad proc just care with urine for 7 days
- May be given orally

Chemo vs P-32

- A few randomised studies
- Results very similar
- Some suggestion rate of strokes and MIs less with P-32 ?significance
- Cost less if treated for more than 1 year
 Rate of final leukaemic transformation same at 20% at 10 years
- Results in ET same as PCV

Can we palliate symptoms?

- The pain and swelling of Rheumatoid arthritis in the knee
- Pain from bone metastases
- Pain from liver metastases
- Reduction in carcinoid symptoms

Radiation synovectomy

- Uses radionuclides with destructive radiation to damage and destroy synovium
 Used as an alternative to chemical or operative synovectomy
 Needs to be used to treat a primary
 - synovial problem

Indications for radiation synovectomy

- RA
- PA
- Baker's cyst
- Inflammatory OA
- Haemophiliac synovitis
- Pigmented villous synovitis
- Most need an effusion
- Normally failed at least 1 treatment with steroids

Radiation synovectomy

- Knee most common
- Shoulders
- Elbows
- Finger joints
- However important to tailor radiopharmaceutical to joint

Isotopes used

Isotope	T1/2 (days)	B- energy MeV	penetration	gamma
P-32	14.3	0.695	2.2mm	nil
Y-90	2.8	0.935	10.8 mm	nil
Re-186	3.8	0.309	4.5 mm	137keV
Er-169	9.4	0.098	1.0mm	nil
Sm-153	1.9	0.081	3.1mm	103keV

Joints and the isotopes used

Joint	Isotopes/pharms
Knee	Y-90 silicate, Y-90 colloid, Re- 186 HEDP, SM-153 HYDA
Shoulder	Y-90 silicate, Y-90 colloid, Sm- 153 HYDA
Elbow	Y-90 silicate, Y-90 colloid, Re- 186 HEDP Er-169 colliods
Fingers	Er-169 colloids
Hip	Y-90 colloid, Y-90 silicate

Methods

Contra-indications

- Pregnancy
- Lactation
- Local skin infection
- Ruptured Baker's cyst (should be checked by ultrasound if considered possible)
- Cautions
 - Children and those under 20
 - Joint instability
 - Significant cartilage loss on x-ray

Preparation of the patient

- Explain procedure
- Explain that a needle will be put into the joint
- Explain that their knee will be immobilised for at least 24 hours (so we can only do one)
- Response is unlikely for 14 days and there may be transient increase in pain
- Non-treated joints will not get better!
- No surgery can be performed for 2 weeks

Activity given

Knees normally 185MBqY-90 silicate and Y-90 colloid
Normal volume 4 ml, may be less
Normal minimum re-treatment rate is 6 months

Methods

- Identify effusion in joint
- Under palpation or direct vision puncture joint
- Draw any fluid in effusion from joint
- Inject radiopharm, (eg 185MBq Y-90 silicate) checking injection in joint
- Ask patient to move joint to distribute the radiopharm
- Immobilise joint, POP, splint
- Image joint (if gamma emission)

Principles of synovectomy

Methods

At end of procedure flush needle with saline to prevent spillage of radiopharmaceutical
Seal injection hole with a non-absorbent dressing-band-aid
Get patient to move joint for about 5 minutes
Then immobilise for at least 16 hours with plaster backslab

Sm-153 HYDA knee 24 hrs pi

Pitfalls and problems

- Main one is not injecting into the joint
- Extravesated isotope can cause tissue and skin necrosis
- Escape of the isotope to systemic circulation
 - Y-90 colloid to liver
 - Re-186 HEDP kidney
- However systemic toxicity is theoretical
- None recorded
- Occaisional late radionecrosis

Assessment of response

Normally made at about 6 weeks
Should include assessment of joint clinically, use of pain killers and ultrasound of joint
Only if no pain improvement at this point is a treatment failure defined

How well does it work?

- Though there are >70 studies
- Few randomised controlled trials
- Only 9 in full random controlled trials
- Most studies agree that 80% of patients get good pain relief
- Similar to surgical synevectomy
- Better than steroids alone Clunie et al

Bone metastses

Often feared in cancer
Tends to mean advanced disease
Often painful
Normally predict that death (possibly unpleasant) will come soon

Which cancers?

• The 5 Bs go to bones

- Breast
- (B)rostate
- Bronchus
- (B)ryroid
- (B)idney

How do they occur

Many cancers have cells which are present circulating in the blood
These travel around the body and can end up anywhere with end arteries

- Bone
- Lung
- Kidney
- Brain

Growing metastases

- Mechanism of why certain sites favoured is not clear
- May be related to blood supply and oxygen levels
 - Kidney prefers lung and bone
 - Breast prefers bone and brain

 Cells survive and start to grow into new clumps of cancer cells-a metastases

Bone/BM metastases

- Though we call them bone mets
- Really bone marrow mets
- Nearly always need red marrow
- Adult-axial skeleton & prox humerus/femur
- Neg bone scan
- MRI, PET positive

Bone/bone marrow mets

- Metastases starts to grow
 Will impinge on bone
 Bone will try to remodel
- Increased uptake of Tc-99m MDP

As bone affected Osteoclasts breakdown damaged bone, osteoblasts and fibroblasts try to reform bone
Bone/bone marrow mets

- The bone may be breached-#s
- Fibroblasts release
 PGs
- These PGs produce local pain
- Other inflammatory cells involved
- Other pain mediators may be released
- Direct involvement of RS nerve fibres

Therapy of bone metastases

Uptake of radionuclide in sclerotic zone (orange) with irradiation within that zone and some into the tumour

Development of radionuclide therapy for bone pain

- Early work with P-32
- Efficacy good and low cost but increased toxicity (?) especially to bone marrow has limited its use
- Sr-89, first true bone seeking agent, also has significant toxicity in widespread mets

Pure beta emitters

Isotope	T1/2	Beta energy	comments
P32	14.3d	1.71	Low TBR = 2 at most
Sr-89	50.5	1.46	Fixed dose 150 MBq

Metastron

• Well tolerated

Up to 80% patient will have fall in Pts of >50% at week 6, recovery normal
G3 and G4 toxicity rare
Some palliation in 70% of patients
Complete pain relief in 22% (Laing et al)
Repeat therapy at 6 months

What agent to use in this patient (62M pain in many sites, HB 10, Pts 150)

Do we wish to use an isotope with long half life which may continue to irradiate the bone marrow for up to 2 months??

Gamma emitters

Isotope	T 1⁄2	Beta energy	Gamma emission
Sm-153 EDTMP	1.93d	0.81 MeV	103
Re-186 HEDP	3.7d	1.07 MeV	137
Sn-117m DTPA	14d	EC only	158

Gamma emitters

Most experience with Samarium-153 ethyldiaminetetrametylenephosphonate
Generally shorter T1/2 than beta emitters
Not dependent on calcium deposition
TBR often 10:1 or higher
Faster onset and clearance

24 hours post 70 mCi Sm-153

Images not so clear as low energy reduces count rate.

Note at 24 hours no renal or bladder activity seen but this is not a superscan

Sm-153 EDTMP (lexidronam)

Results of **US/European MCT** for Merrill Pharm • Phase III trail in prostate cancer Randomised to placebo lexidronam or Sm-153 product

Week number

Limitations to trials

OPrimary aim has been pain relief

- However could there be an advantage in combing treatments
 - Longer pain relief
 - Anticancer effect
- Drugs that can be added
 - Bisphosphonate
 - Chemotherapy

Concerns

The primary organ for toxicity in radionuclide therapy with bone palliation therapy is bone marrow
Often compromised by previous treatment or disease
Would additional treatment jut result in greater toxicity

Sm-153 EDTMP

 Effect on Pts and WBC
 Related to radioactivity not lexidronam
 Recovered by 6 weeks

Bone mets and radium

 At site of bone mets increased turnover of bone matrix

- Increased uptake of calcium
- As Sr is also a group II metal Sr-89 (metastron) used to treat painful bone metastases
- Radium below Sr in group II also has uptake in bone matrix
 Ra-223 an alpha emitter

The periodic table

Ra-223

Ra-223 vs placebo

- Multi-centre phase II trial
- Patients with symptomatic bone metastases treated with placebo or Ra-233 given 4 weekly
- 33 patients received Ra-233 and 31 placebo
- Activities 50KBq/kg (mean 3.5MBq)

Ra-233 vs placebo

Well tolerated no significant BM toxicity Some diarrhoea in treatment group Mean Alk phos change over 6 months was -65% in treated group and +9% in placebo • Mean overall survival was significantly longer (65 weeks) c/w placebo (46 weeks)

Overall survival

Changes in Alk Phos

Rd-223 has 80-85keV X-ray (Nilsson at al Clin Can Res 2005

223Ra

Phase III RCT

- Set up by Algeta
- Based at Radium Hospital, Oslo
- Commercial interest from Bayer
- Plan to set up trial in 30 countries
- Powered to show survival
- Need 900 patients 2/3 to have treatment, 1/3 placebo
- No imaging to preserve blinding

Protocol

- Patient to have proven bone metastases from Ca prostate
- Could have failed therapy such as taxanes
- After consent randomised to treatment or placebo
- Only one person at each sites know if it is active drug-must not tell patient or other docs
- 30kBq/kg 4 weekly for 6 cycles if live long enough or symptoms not worse

Patient characteristics

ALSYMPCA Updated Analysis Patient Demographics and Baseline Characteristics (ITT N = 921)

Parameter	Radium-223 n = 614	Placebo n = 307
Age, y Mean	70.2	70.8
Race, n (%) Caucasian	575 (94)	290 (95)
Baseline ECOG score, n (%) ≤ 1 2	536 (87) 76 (12)	265 (86) 40 (13)
Extent of disease, n (%) < 6 metastases 6–20 metastases > 20 metastases/superscan	100 (16) 262 (43) 249 (41)	38 (12) 147 (48) 121 (40)
WHO ladder, cancer pain index ≥ 2, n (%)	345 (56)	168 (55)

Patient characteristics

ALSYMPCA Updated Analysis Patient Baseline Characteristics (ITT N = 921)

Parameter Median (min, max)	Radium-223 (n = 614)	Placebo (n = 307)
Haemoglobin, g/dL	12.2 (8.5-15.7)	12.1 (8.5-16.4)
Albumin, g/L	40 (24-53)	40 (23-50)
Total ALP, μg/L	211 (32-6431)	223 (29-4805)
LDH, U/L	315 (76-2171)	336 (132-3856)
PSA, μg/L	146 (3.8-6026)	173 (1.5-14500)
Current bisphosphonates Yes, n (%)	250 (40.7)	124 (40.4)
Prior docetaxel Yes, n (%)	352 (57.3)	174 (56.7)

Dosing schedule

Toxicity

ALSYMPCA Updated Analysis AEs of Interest

	All Gra	ades	Grades 3 or 4		
Patients with AEs n, (%)	Radium-223 n = 600	Placebo n = 301	Radium-223 n = 600	Placebo n= 301	
Hematologic					
Anemia	187 (31)	92 (31)	77 (13)	39 (13)	
Neutropenia	30 (5)	3 (1)	13 (2)	2 (1)	
Thrombocytopenia	69 (12)	17 (6)	38 (6)	6 (2)	
Non-Hematologic					
Bone pain	300 (50)	187 (62)	125 (21)	77 (26)	
Diarrhea	151 (25)	45 (15)	9 (2)	5 (2)	
Nausea	213 (36)	104 (35)	10 (2)	5 (2)	
Vomiting	111 (19)	41 (14)	10 (2)	7 (2)	
Constipation	108 (18)	64 (21)	6 (1)	4 (1)	

Toxicity

ALSYMPCA Updated Analysis Summary of Patients With Adverse Events: Safety Population*

Patients With Adverse Events (AEs), n (%)	Radium-223 n = 600	Placebo n = 301
All grade AEs	558 (93)	290 (96)
Grade 3 or 4 AEs	339 (57)	188 (63)
Serious AEs (SAEs)	281 (47)	181 (60)
Discontinuation due to AEs	99 (17)	62 (21)

*Safety population comprised patients who received at least 1 dose; 1 patient in the placebo group received one injection of Radium-223 (Week 0) and is included in the Radium-223 safety analysis.

Does it work

Secondary end points

ALSYMPCA Updated Analysis Secondary Endpoints: ALP and PSA

	Hazar 95%	d ratio ⁄⁄a Cl	<i>P</i> value
Time to Total ALP progressi	on 0. [.] (0.129	167 , 0.217)	<0.00001
Time to PSA progression	0.6 (0.539	0.643 (0.539, 0.768)	
	Radium-223 n (%)	Placebo n (%)	<i>P</i> value
Total ALP response 30% reduction 50% reduction	233 (47) 135 (27)	7 (3) 2 (<1)	<0.001 <0.001
Total ALP normalization*	109 (34)	2 (1)	< 0.001

*In patients who had elevated total ALP at baseline.

<u>Effect of extent of bone disease</u>

Effect of previous treatment

Effect of previous treatment

Summary of results

ALSYMPCA Updated Analysis Survival Benefit Across Patient Subgroups

Variable	Subgroup	N	Hazard F	Ratio	HR	95% CI
Overall Survival		921	H H H	C).695	0.581–0.832
Total ALP #	< 220 U/L	517	⊢ ●-+•	C	0.825	0.635–1.072
	>= 220 U/L	404	⊢● -	C).619	0.486–0.788
Current Use of Bisphosphonates #	Yes	374	⊢● →	().699	0.525-0.931
	No	547	⊢●	().736	0.587-0.923
Prior Use of Docetaxel #	Yes	526	⊢● -	C).710	0.565–0.891
	No	395	⊢ ●	C).745	0.562-0.987
Baseline ECOG Status	0 or 1	801	⊢● −1	().675	0.555-0.821
	2 or Higher	118		(0.820	0.498–1.351
			00	1.5 2		
			Favors Radium-223	Favors Placebo		

How does Ra-223 compare

Overall Survival Benefit in Recent CRPC Trials

Agent (trial, year)	Disease State	Comparator	Hazard Ratio	<i>P</i> value
Radium-223/Alpharadin (ALSYMPCA 2011)	Bone metastases CRPC	Placebo + best standard of care	0.695	0.00185
Docetaxel/Taxotere ¹ (TAX327 2004)	Chemo-naive CRPC	Mitoxantrone Prednisone	0.76	0.009
Cabazitaxel/Jevtana ² (TROPIC 2010)	Post-docetaxel CRPC	Mitoxantrone Prednisone	0.70	<0.0001
Sipuleucel-T/Provenge ³ (IMPACT 2010)	Chemo-naive CRPC	Placebo	0.775	0.032
Abiraterone/Zytiga ⁴ (COU-AA-301 2010)	Post-docetaxel CRPC	Placebo Prednisone	0.65	<0.001

1. Tannock et al. N Engl J Med. 2004;351:1502-1512.

2. de Bono. Lancet. 2010;376:1147-1154.

3. Kantoff et al. N Engl J Med. 2010;363:411-422.

4. de Bono. N Engl J Med. 2011;364:1995-2005.

Where now

Phase 1-3 cost over US\$ 30 million • Drug presented to EMA and FDA for licensing • Will go on sale in 2013 To re-coup costs price may be high estimated US\$ 10,000 per 6 cycles • However cost not much different from Abiratarone
meta-iodobenzylguanidine

CH₂ NHCNHNH₂

★ ¹²³I
131I

Controversies

- Does it work
- How much do we give
- How often do we give it
- When do we stop/start treatment
- Any long term toxicity

¹³¹I mIBG therapy

Stop interfering drugs-may not be possible in Pheo may only be able to reduce phenoxybenzamine
Quantitative tracer imaging
Admit to isolation unit
Block thyroid
i.v.i. 60-90 mins

Amersham trolley Uses a 3 way tap system And a peadiatric burette Behind a thick lead shield Then system used to washout the I-131 MIBG into patient via pump

Giving the I-131 mIBG

Normally need to be admitted to a separate room

Can use isolated side room with mobile shields

After dose given slowly I.v (with cardiac monitoring for phaeo) Patient needs to wait until activity reduced enough for discharge

2.7GBq = 3 days 5.5 GBq = 5 days 7.7 GBq= 7 days

Toxicity of mIBG-EANM survey Haematological toxicity children and adults Grade % 4 23 IV

mIBG – carcinoid-EANM survey

N = 157 96% Stage **III/IV**

%	Tumo	ur Ma	arker	Palliation
CR	0	17	10	
PR	16	39	61	
SD	65	36	27	
PD	19	8	2	

Results from other centres

 Syweck et al WJS 2004 compared 2 centres-58 patients at each

- -1 MIBG
- 1 without MIBG
- Survival noted at
 - $-3 \mathrm{yr}$

 $-5 \mathrm{yr}$

Results from other centres

- Safford et al Cancer 2004
- 98 patients
- Median survival 24 months
- If had symptom relief with reduced flushing etc median survival 57 months
 Radiological response not predictor of survival
- Best if 15Gbq given in 2-3 doses

131I-MIBG therapy

Post therapy Whole body 131I-MIBG scan shows good accumulation of tracer in the Post therapy whole body images shows multiple areas of MIBG accumulation in the neck, left shoulder, thoracic spine, lumbar spine, liver, pelvis, right hip and left upper femur consistent with therapeutic uptake in wide spread bone and soft tissue metastases

known liver metastases

Response to therapy-gastrinoma

Does CT change or symptom relief help predict survival

 RFH, review of 38 patient – completed 3x5.5GBq I-131 mIBG therapy
 All with minimum of 12 months follow-up
 Looked at PFS and OS compared to

 CT changes
 Symptom response

Overall survival related to symptom response

Overall survival related to change on CT

Meta-analysis of MIBG therapy in NETs Navilkissoor

First Author	CT Responders	CT Stable	Biochemical	Symptomatic	Median Overall	5year survival
			Responders	Responders	Survival (months)	
Gonias	12/45	24/45	24/34	n/a	-	64%
Gedik	8/17	6/17	8/12	16/18	42	n/a
Nwosu	11/40	n/a	11/29	27/48	46	
Buscombe	9/24	8/24	n/a	n/a	-	n/a
Sywak	n/a	n/a	n/a	n/a	-	63%
Safford	10/75	n/a	15/52	35/72	28	22%
Bomanji	12/25	n/a	14/25	20/25	17	
Safford	8/22	n/a	12/20	19/22	56	
Castellani	5/16	9/16	n/a	n/a	-	
Fischer	n/a	n/a	n/a	n/a	-	
Krempf	5/15	n/a	7/15	n/a	-	
Shapiro	8/28	n/a	12/28	n/a	-	
Navalkissoor	3/37	22/37	3/20	15/34	48	33%
	91/344 (26%)	69/129 (53%)			46	41%
Total			106/235 (45%)	132/219 (60%)		

I-131 in neuroblastoma

- Tumour of childhood
- Most common extra-cranial solid tumour in children
- As many as 150 new cases per annum in UK
- 50% in children under 2
- Neural crest origin
- May develop anywhere along sympathetic NS
- Often metastasises especially to bone and liver

MIBG and neuroblastoma

- 85-90% of neuroblastomas have uptake of MIBG
 Can be used to look for unexpected sites of disease
- Remember children often very young so image quality may be an issue

Treatment

OPrimary treatment is surgery if possible Second line treatment now accepted as chemotherapy and or radiotherapy Chemotherapy based on temozolamide and irinotecan If fail then palliative treatment with I-131 MIBG (maybe with chemotherapy) can extend survival

I-131 MIBG results

- Garaventa et al BJC 1999
- Activity based on wt
 2.7GBq if <20kg,
 5.5GBq if >20kg
- Of 43 patients 1xCR 12xPR, 25xDS, 6xPD
- For stage 2 few deaths, stage 4 median OS 19months

What about dosimetry

- Approach developed by Flux et al at RMH
- Calculate how much MIBG to give for a 2Gy therapy to the patient using tracer dose and 3D dosimetry
- Activity that is required 1.8GBq to 32GBq
- This keeps toxicity down but how to give 32GBq volume problems administration issues (3BGq/hr) pharmacological issues
 - Fractionate no evidence
 - Use carrier free- data emerging

Patient specific dosimetry

Tumour uptake %ml⁻¹

tracer data
post-therapy data

Biokinetics: T1/2 eff volume: CT/MRI SPECT: uptake/ml/MBq

Radiopeptides

Based on somatostatin system
 Peptides converted form commercial sources:

- Lanreotide
- Octreotide
- Octreotate

Normally DOTA linker
Isotopes In-111, Y-90, Lu-177

It is all getting complex

RADIOISOTOPES
In-111
Y-90
Lu-177
Re-188

- PEPTIDES
- Octreotide
- Lanreotide
- Depreotide
- Octreotate
- OctreoNOC

High activity In-111 oct

- Based on Auger electron of In-111
- Penetration 1-2 cells
- Fortunately localises within cell
- Up to 7GBq can be given
- After 35GBq some bone marrow toxicity noted
- Expensive

Results

• Main groups reported • Krenning over 100 patients RFH 18 patients
 Lowe, Louisiana 24 patients About 15% CR/PR • 60% symptom relief especially carcinoid Minimal toxicity under 35GBq cumulative activity

Patient with MCT

Y-90 DOTATOC first results Otte et al EJNM 1999; 26; 1439

- Results of first 29 patients who had received 4 or more cycles of >4 GBq of Y-90 DOTATOC
- Toxicity at cumulative doses of approx 15GBq in 5 pts
- Stability in 20 pts, PR 6 Prog in 3
- 10 patients marked improvement in pain
- Now extended to >200 patients

Response to Y-90 Octreotide Otte et al EJNM 1999

Y-90 SMT 487

- Phase II study completed
- Noted little renal toxicity under 4.4 GBq given in 3 cycles
- Use of amino acids to protect kidney with at least 10g lysine/cystine
- Use In-111 product or Y-86 DOTATOC for dosimetry
- Over 160 patients in 10 countries studied
- Better results if less tumour present
- Worked better in foregut tumours

Insulinoma 4.4 GBq with aa

Use of Y-86 octreotide Jamar et al 2003 EJNMMI

- 24 patients studied
- Look at Y-86 PET as predictor of Y-90
- Aim to look at renal toxicity and tumour dosimetry
- PET 4-48 hours pi MIRD3
- Use of amino acids reduced renal dose form 4.4mGy/MBq-1.7mGy/MBq
- Therefore to stay under 23Gy limit max 12GBq to be given
- Tumour dose variable 0.4-16mGy/MBq not affected by amino acids and not related to tumour response

Y-90 Lanreotide

• Patients selected if:

- SSR positive tumour on In-111 Octreotide
- Uptake in lesions greater than normal liver (Krenning grade 3&4)
- No other treatment successful or appropriate
- Symptomatic or growing disease
- Consent to experimental nature of treatment

Biodistribution of In-111 Octreotide and Y-90 Lanreotide

Y-90 Lanreotide

- Lanreotide additional tyrosine increase biding to SSR 5
 154 patients in multi-centre trial
 3 cycles of 1 GBq of Y-90 lanreotide
 Repeated one if some response
 54% have sustained response
- Tumour shrinkage in 14%

Results of Lanreotide multicentre trial (n=154)

 Patients from UK, Switzerland, Austria and Italy
 All responses by SWOG criteria
 Also 17 patients had improved QALY

Y-90 octreotate

Newer peptide
Higher affinity for SSR2
Minimal side effects as renal and bone marrow uptake low
Patients treated in Poland, UK and Germany

Foregut, pancreas – secretor (gastrinoma) NECLM (WHO 2)

Results Cwikla et al

At 6 months 12 patients PR, 1 only PD
23 patients had good symptomatic response
Median PFS was 20 months with Median OS of 22 months
6 patients mild renal toxicity (WHO grade 1,2)
1 patient reduced platelets grade3

Treatment with Y-90 DOTATATE Cwikla et al (Ann Oncol 2010)

35 patients with proven GEP-NET
 All treated patient had evidence of PD

before therapy

- 4x3-4GBq Y-90 DOTATATE with aminoacid cover 12 weeks apart
- Response measure by CT and symptom relief

What is a response with Y-90

Waterfall plot at 6 weeks

Pre-therapy

Waterfall plot at 6 months

6 months post last cycle 12 months after last cycle

Y-90 DOTATATE

Latest RFH figures
Total patient survival (all 82 patients):

mean patient survival: 39 +/- 3 months
Patient survival rate at:
1 year: 95+/-3%
2 year: 91+/- 4%
3 year: 84+/- 5%

• 5 year: 55+/-7%

Lu-177 Octreotate

- Developed by Krenning
 JCO 2005
- ISI patients treated with cum activities of 22-30 GBq of Lu-177 octreotate
- Given with renal protection
- Toxicity bone marrow and in some men reduction in testosterone
 Follow up data in 125 patients

Lu-177 in GEP (Krenning-JCO 2005)

Krenning et al JCO 2005

Lu-177 dosimetry Baum et al Cancer Bio & radiopharm 2007

- Easier as can use tracer dose or after first therapy as Lu-177 has a low yield 103keV gamma emission
- 69 patients treated with Lu-177 DOTATATE Lu-177 DOTANOC
- Radiation dose calculated using MIRD3
- Lower dosimetry to kidneys and spleen with and higher dose to tumour with DOTATATE
- No correlation between tumour dose and clinical or radiological response

Lu-177 octreotate (n=310) Kwekkeboom JCO 2008

• Carcinoid n=188

1% CR, 22% PR, 17% MR, 42% SD, 20%DP
PET non func n=72

- 6% CR, 36% PR, 18% MR, 26% SD, 14% DP
- PET func n=19

• 0% CR 60% PR, 20% MR, 30% DS, 10% PD

Survival post Lu-177 oct n=310

		P.	PRT	DC)TA	TATE
Y-90	Author (n)	CR	PR	SD	DP	Symptom relief
	Baum (75)	0	28	39	8	64
	Cwikla (57)	0	14	44	0	51
	Toupanakis (85)	0	11	66	11	62
	TOTAL (217)	0 0%	49 23%	149 69%	19 8%	167 77%
Lu-177	Author (n)	CR	PR	SD	DP	Symptom relief
	Kwekenboom (310)	5	86	158	61	21/36
	Gabriel (55)	0	15	27	13	
	Total (365)	5 2%	101 27%	185 51%	74 20%	58%

Y-90 particulates

2 main types From Australia Y-90 resin balls SIRspheres From Canada Y-90 imptegnated glass balls Therasphers

How do you give SIR spheres

Day 1 Need to block off collaterals including **GDA** with coils Prevents Sir spheres going to stomach or pancreas Inject 80-100MBq Tc-99m MAA into radiological catheter and flush line Image to determine shunt

Removing collaterals

Shunting

2 main problems with SIR spheres If too much (more than 20%) shunt to lung leads to lung fibrosis Also in some patients shunting to small bowel All can be calculated from MAA scan

Shunting

No shunting

27% shunting

Dosing

3 methods

- Individual dosimtry based on MAA scan +/-SPECT keep lung dose below 30Gy
- Semi empirical
 - Degree of shunting
 - Size of patient
 - % liver full of tumour
- Fully empirical Give 2-3GBq
 No good evidence which is best

Dose reduction and shunting

Lung shunt	Change in Y-90 SIR sphere dose
<10%	No change
10-15%	Reduce by 20%
15-20%	Reduced by 40%
>20%	Do not give

Dosing SIR spheres

Use weight and height
Calculate BSA using du Bois method
Use CT/MRI to determine % liver involvement
Calculate activity in GBq as (BSA-0.2) + (% tumour involvement)
Correct for shunt if needed

Dosing empirical

 Use estimated activity as described in table
 Adjust for shunting

Estimate of	Activity of			
tumour-liver	Y-90			
Involvement	Sir spheres			
>50%	3GBq			
25-50%	2.5GBq			
<25%	2 GBq			

▶ Use Tc-99m MAA scan to calculate the distribution Try to give tumour 70-90 Gy Keep normal liver to 20-25Gy Lung ALARA but must be < 30Gy

MIRD method

Liver activity	Lung activity	Liver dose mGy/Mq	Lung dose mGy/Mq
100%	0%	0.101	0.006
95%	5%	0.096	0.012
90%	10%	0.091	0.017
80%	20%	0.82	0.028
70%	30%	0.072	0.039

Giving SIR sphere

Day 8 **Check no re-cannulisation** Place cannula at same site as where MAA infused Give slowly using WATER as driver Need to give in small allaquots to prevent liver embolisation As heavy need to agitate spheres as inject

Administration kit

Pivotal study van hazel JSO 2004

Phase II RCT from Australia 21 patients metastatic CRC <25% liver mets >80% mets in liver All patients received 4 cycles of 5F-U and leucovorin Half randomised to additional Y-90 Sir spheres

van Hazel et al 2004 Median PFS (p=0.005)

One patient's result

schools gu

My cancer miracle

Make the

00

Cambridge News

Doctors who gave Brian just 12 months to live are amazed as tumours vanish under trial treatment

JORDAN DAY

ALMOST a year ago today, 72-year-old Brian Brooks was en just 12 months to live. it was discovered that the eloved father and grandfather

at Cambrida

it was when Mr Brooks was

radiotherapy that uses the tumour's blood apply to target multiple sites of disease with the live: the live: Mr Brooks put his name forward Mr Brooks put his name forward - and to his shock, was one of

"We've just had the results back and Addenbrooke's can't believe Turn to page 5

20 to siz

Recent developments

Zalutsky et al JNM 2008 At-211 anti-tenascin antibody To treat malignant gliomas I8 patients with untreatable glioma treated with 74-108 MBq of At-211-ch81C6 given to 9 patients via intra-thecal catheter Imaging of Xrays from Po recorded

Polonium images at different time points

Patient A Given via Omyha resevoir

Patient B Given via catheter into CSF in lower lumber spine

Responses to At-211

Summary

Radionuclide therapy can treat a range of benign and malignant conditions
Beginning to be involved in more common tumours
Area of research which is active
Radiologists do not do therapy