Gallium-68 in infection imaging

Thomas Ebenhan &

Prof MM Sathekge

16th ISORBE CONGRESS

International Society of Radiolabeled Blood Elements

21-23 March 2013, PRETORIA, SOUTH AFRICA

OUTLINE

Some words about infection

68-gallium & infection imaging

Preclinical application (i.e. ⁶⁸Ga-labeled UBI)

Infection

- Infectious diseases are caused by microorganisms (microbes): viruses, bacteria, and parasites etc.
 - the hosting organism provides the resources necessary for the infecting species to multiply

Inflammation

The complex biologic response of tissues to harmful stimuli.

Infection / inflammation are still a major cause of global morbidity and mortality despite advances in both diagnosis and treatment

Sathekge et al, Eur J Nucl Med Mol Imaging 2009, **36**: 1176-1184.

Public impact of infectious diseases

Pasteur Institute Annual Report 2007

17 million deaths each year due to infectious diseases (one third of annual mortality for the entire planet)

43% of deaths in developing countries only 1% in industrialized countries.

235 million doses of antibiotics are consumed annually, 20% to 50% of that use is unnecessary.^{1,2}

Over 60% of Staphylococcus aureus cases in hospital ICUs in some countries are now resistant to methicillin, oxacillin, penicillin and amoxicillin.³

Up to 75% of antibiotics are prescribed for respiratory tract infections (RTI),⁴ even though around **80% of RTI are caused by viruses.**⁵

MDR-TB treatment is ca. **500 times more** expensive than traditional TB treatment.³

1. Centers for Disease Control and Prevention, 2000, New England Journal of Medicine, December 28, 2000

2. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Genday MM, Huber PR, Tamm M, Müller B. Effect of PCT-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised single-blinded intervention trial. Lancet 2004; 363:600-607

3. Laxminarayan, R., A. Malani. Extending the Cure: Policy responses to the growing threat of antibiotic resistance. Washington, DC, Resources for the Future 2007.

4. Christ-Crain M, Stolz D, Bingisser R, Müller C, Miedlinger D, Huber PR, Zimmerli W, Harbarth S, Tamm M, Müller B. Procalcitonin guidance of antibiotic therapy in communityacquired pneumonia. Am J Respir Crit Care Med. 2006; 174: 84-93.

5. World Health Report. 2003

necs

68Ga-candidates for infection imaging

Since 1964 there are **over 750 publication** available involving ⁶⁸Ga (500 publication in the last decade)

SHEALY CN, ARONOW S, BROWNELL GL. GALLIUM-68 AS A SCANNING AGENT FOR INTRACRANIAL LESIONS. J Nucl Med. 1964 Mar;5:161-7

Tracer	classification	published
⁶⁸ Ga-CITRATE	Citrate (citric acid)	Hnatowich DJ, 1975 Kumar et al. 2009 Rizello et al. 2010 Nanni et al. 2009
⁶⁸ Ga(3+)	Gallium(III)chloride	Maekinen et al. 2005
⁶⁸ Ga-DOTA-VAP-P1	peptide	Ujula et al. 2009
⁶⁸ Ga-TAFC, -FOXE	siderophores	Petrik et al. 2010
⁶⁸ Ga-TF	apo-transferrin	Kumar et al. 2011
68Ga-NOTA-UBI29-41	Antimicrobial peptide	Ebenhan et al. 2012

Peptides as biomarkers for infection?

Identify and develop radioactive compounds specific for infections? Peptide incorporates a cation-rich domain Differentiation use of antiof infection Selective microbial peptides and interaction with inflammation? anionic regions of bacterial membrane occurence naturally in expected most multicellular organisms

Tracer justification

necsa We're in your world

Sathekge, Nucl Med Commun 2008, 26:663-65

⁶⁸Ga in biomolecules?

necsa We're in your world

The challenge to conjugate NOTA to UBI

The NOTA group was conjugated with peptides using solid-phase

⁶⁸Gallium/ ⁶⁸Germanium generator

W. A. Breeman *et al. Eur J Nucl Med Mol Imaging* 2005; **32**:478-85.; E. De Blois *et al. Appl Radiat Isot* 2010; **69**: 308-15

Synthesis & in vitro evaluation

Cellular Binding

Fluorescent Assay

Compound binding affinity at 3µM pH 5 (N=3)

	CONTROL PEPTIDE *	(Ga)NOTA-UBI	
Staphylococcus aureus (2x 10 ⁷ CFU)	29,1 ± 4,8 %	97,9 ± 1,9%	
Mt4 human leucocytes	9,4 ± 4,8 %	9,3 ± 3,4 %	

* NOTA-UBI-(Lys-Abz) (arginine (+) replaced by aspartic acid (-))

Preclinical application

Preclinical application - 68Ga-NOTA-UBI

Balb/c mouse (M)1	New Zealand white rabbit (M)2	Vervet monkey (M)2	
X	X	X	Imaging of healthy condition (Study of dosimetry and organ biodistribution)
	X	X	Fluids analysis for ⁶⁸ Ga-activity (Blood & urine sampling for time-activity correlation)
X	X		Imaging muscular bacterial infection (Staphylococcus aureus)
	X		Imaging muscular inflammation (Turpentine oil induced)
	X		Imaging pulmonary inflammation (Ovalbumin induced asthma)

1) Preclinical µPET/CT/SPECT Scanner (GE Healthcare, TRIUMPH)

2) Clinical PET/CT camera (Siemens, Biograph True Point, 40 slice CT).

necsa We're in your world

Imaging biodistribution- 68Ga-NOTA-UBI necsa

PET Imaging (Static scan 120 min p.i., ID 48.2 MBq/kg, BW 3.6 kg)

Coronal PET image of ⁶⁸Ga-NOTA-UBI

Scan time	30 min p.i.	60 min p.i.	120 min p.i.
Organ		Mean SUV	
heart	0.81 ± 0.23	0.65 ± 0.16	0.59 ± 0.36
liver	1.88 ± 1.16	1.80 ± 1.31	0.84 ± 0.47
spleen	1.69 ± 0.88	1.60 ± 0.94	0.57 ± 0.36
bladder	26.20 ± 15.63	12.55 ± 2.59	8.15 ± 7.83
kidney	3.21 ± 0.89	3.45 ± 0.71	2,78 ± 0.99
hind leg biceps	0,26 ± 0.10	0.20 ± 0.05	0.12 ± 0.03
front leg triceps	0.24 ± 0.05	0.21 ± 0.04	0.12 ± 0.05
lung	0.57 ± 0.22	0.51 ± 0.22	0.33 ± 0.07
brain	0.23 ±0.10	0.16 ± 0.07	0.09 ± 0.04

Quantitative 3D-VOI analysis (mean SUV) N=3-7

Fluid analysis - 68Ga-NOTA-UBI activity

⁶⁸Ga-NOTA-UBI concentration per A) ml blood and B) ml urine in healthy rabbits (N=3-7)

 $c_{max} = 0.44 \pm 0.19\% ID/g (max. blood concentration)$ $C_{Vd} = 23.4 \mu g/L (distributed tracer concentration)$ $\Delta Vol = 25 \mu g/ml^*min^{-1} (Bolus infusion)$ $T_{1/2} = 19.8 min (biological blood half-life)$

 Δct_{Blood} = -2.64%ID/h (blood elimination rate)

 $c_{max} = 2.56 \pm 1.09\% ID/g \text{ (max. urine concentration)}$ $TA_{50} = 22.6 \text{min (activity accumulation half time)}$ $\Delta ct_{Urine} = 4.40\% ID/h \text{ (urinary accumulation rate)}$ $\Sigma_{urine120} = 74 \pm 4\% ID \text{ (urinary activity recovery 120 min)}$

Imaging biodistribution- 68Ga-NOTA-UBI necsa

Imaging, 3D ROI calculation and fluid analysis of healthy vervet monkeys

- Static scan 120 min p.i., ID 35.5 MBq/kg, BW 6.6kg

Infection Imaging - 68Ga-NOTA-UBI

Balb /c mouse bearing infection

microPET imaging (Static scan 30 min p.i., ID 12 MBq, BW 35g)

Coronal microPET image of ⁶⁸Ga-NOTA-UBI

Method and results

necsa

5x10⁶ cfu of viable Staphylococcus aureus bacilli inoculated into the hind thigh muscle (intramuscular / intradermal)

µPET/CT Scanner (GE Healthcare, Modell: TRIUMPH) at the Institute of Nuclear Medicine and Allied Sciences (INMAS, New Delhi).

Standard inhalation anaesthesia: Isoflurane

Increasing, sensitive uptake of ⁶⁸Ga-NOTA-UBI, at infection site.

Specificity against sterile muscular inflammation?

Infection Imaging - 68Ga-NOTA-UBI

Rabbits bearing Staphylococcus aureus infection (72h post initiation)

Axial PET/CT images show contra lateral hind legs at(1) muscular infection site(2) muscular inflammation site

Coronal PET image of ⁶⁸Ga-NOTA-UBI at 60 min p.i.

NECS We're in your world

Infection Imaging - 68Ga-NOTA-UBI

2.47 ± $2.95 \pm$ $3.54 \pm$ Ratio Infx / 3.80 ± 0.90 0.39 0.86 0.54 infi 6.00 **Quantitative 3D-VOI** analysis (SUV) 5.00 Black solid squares: 4.00 muscular bacterial / NT ratio infection site 3.00 Grey open circles: muscular inflammation 2.00 induced by turpentine oil Ó 8 8 0 Ø 1.00 Non-targeted tissue is \bigcirc represented by front leg triceps. 0.00 30 60 0 90 120

Time (minutes post injection)

⁶⁸Ga-NOTA-UBI shows increasing, specific uptake in the muscle bearing bacterial infection compared to the contra lateral inflamed muscle

Imaging Inflammation? 68Ga-NOTA-UBI

Pulmonary distribution of ⁶⁸Ga-NOTA-UBI in rabbits

target/ non-target ratio	PET/CT scan time post tracer injection	
(Lung/front leg triceps)	30 min	60 min
1) healthy	2.38 ± 0.63	2.48 ± 0.53
2) Infection/ Inflammation	2,51 ± 0.79	2.17 ± 0.45
3) Asthma*	2.42 ± 0.45	2.53 ± 0.44

* Initiation: - 5weeks, Induction: 5% ovalbumin aerosol inhalation

Representative axial image of PET/CT Scan (60min p.i.)

No significantly increased T/NT ratios (lung/muscle) were found in asthmatic inflamed lungs and rabbit lungs with extra pulmonary infection/inflammation compared to rabbits lungs in healthy condition.

Summary and Outlook

- ➢ The ⁶⁸Ga-NOTA-UBI fragments shows sufficient imaging and biodistribution in preclinical, healthy vervet monkeys and rabbits.
- The ⁶⁸Ga-NOTA-UBI fragment is capable to monitor infection (balb/ c mice) & differentiate non pathogenic muscular infection from inflammation in rabbits.
- > It also won't reflect asthmatic lung inflammation in rabbits.

Similar peptide candidates are currently investigated - *in vitro* and using *in vivo* imaging! UP/NECSA will launch a multicenter clinical trial with NOTA-UBI

Project Network

necsa We're in your world

