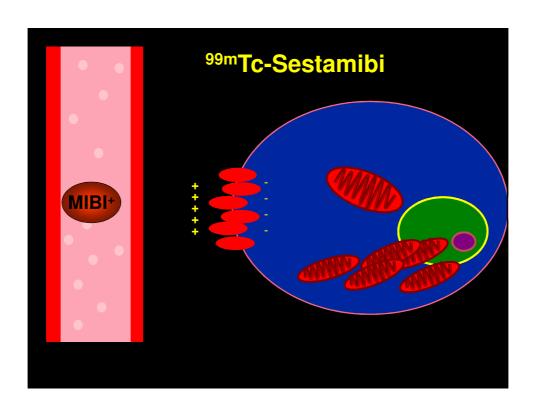
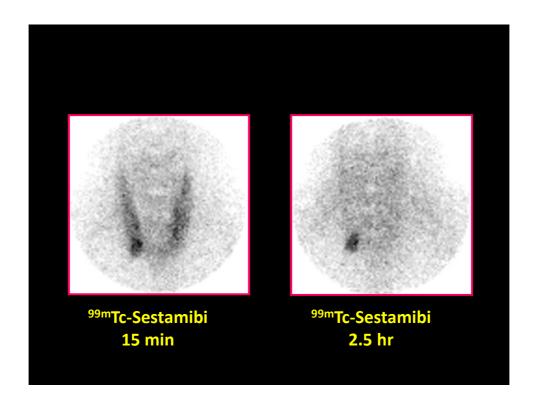
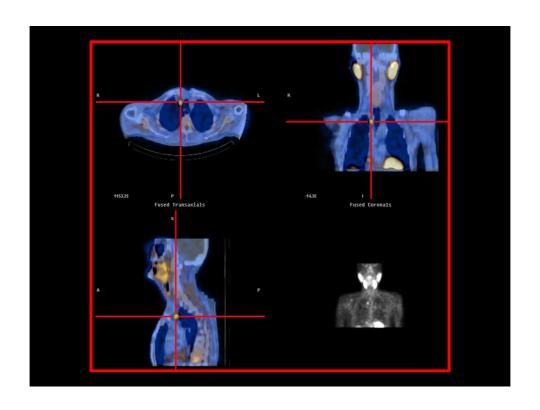
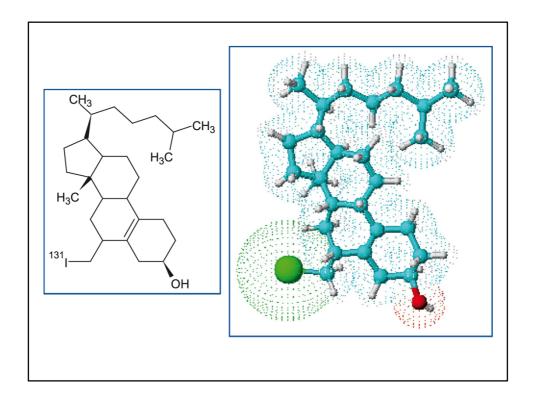
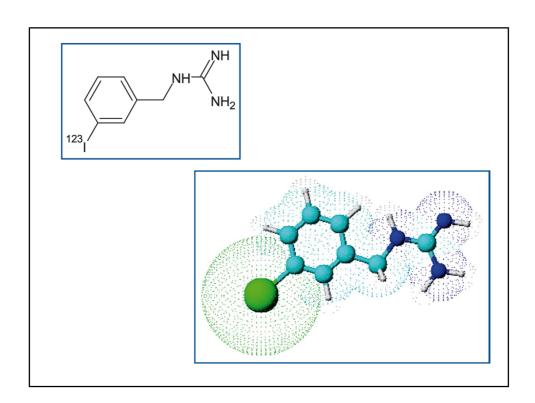

IAEA Regional Training Course (AFRA) on the Role of Nuclear Medicine in Endocrine Disease and Infection/Inflammation

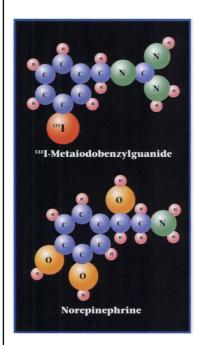

RADIOPHARMACEUTICALS IN ENDOCRINE IMAGING


Giuliano Mariani
Regional Center of Nuclear Medicine,
University of Pisa Medical School, Pisa,
Italy


Pretoria, South Africa, Dec. 6-10, 2010



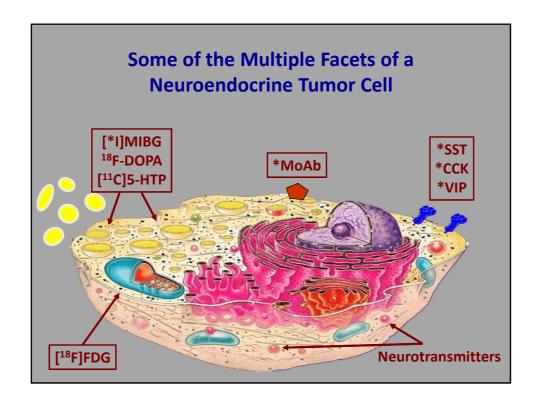


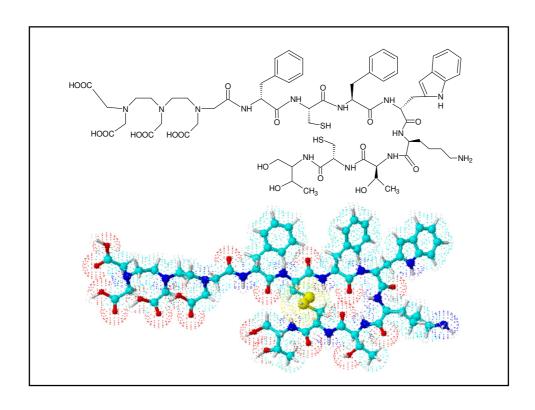

¹³¹I-Methyl-nor-Cholesterol

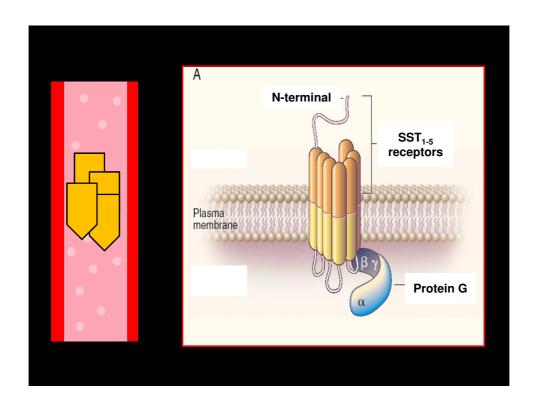
- •Developed for scintigraphic imaging of the adrenal glands (cortical component) in the early 1970's.
- •Cholesterol analog entering the synthetic pathways of steroid hormones.
- •Relatively slow synthesis, involving late imaging times (up to 7 days).
- •Mandatory use of ¹³¹I, despite its poor imaging characteristics.

¹³¹I-Methyl-nor-Cholesterol

- •Upon i.v. administration, it is transported by plasma lipoproteins.
- •Active transport into cells of the adrenal cortex.
- •Inside the cells, it is estherified and thus becomes a metabolically inert molecule.
- •Estherified ¹³¹l-methyl-nor-cholesterol is therefore "trapped" inside cells of the <u>adrenal cortex.</u>




[*I]MIBG


- •Developed for imaging cells of the chromaffin system in the late 1970's.
- ATP-mediated uptake, and storing in secretory vesicles.
- •Released by exocytosis in the synaptic space.
- •Secretory vesicles abundant in several tissues with adrenergic innervation (including the myocardium).

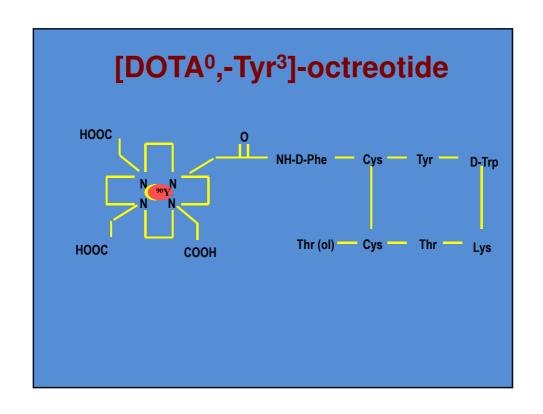
[*I]MIBG

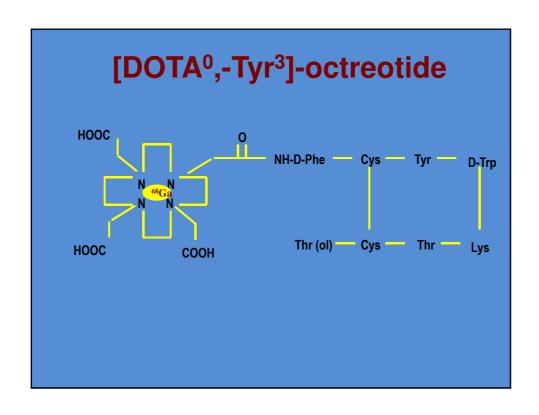
- •Radiolabeled MIBG released in the synaptic space does not bind to post-synaptic receptors.
- •Radiolabeled MIBG is not degraded by enzymes that degrade catecholamines (COMT, MAO).
- •Employed for scintigraphic imaging of "neural crest" tumors (including pheochromocytoma).
- •Relatively fast kinetics of uptake/accumulation allows labeling with ¹²³I (favourable imaging characteristics).
- •Labeling with ¹³¹I mostly reserved for therapy.
- •Novel applications of [123I]MIBG for imaging cardiac innervation.

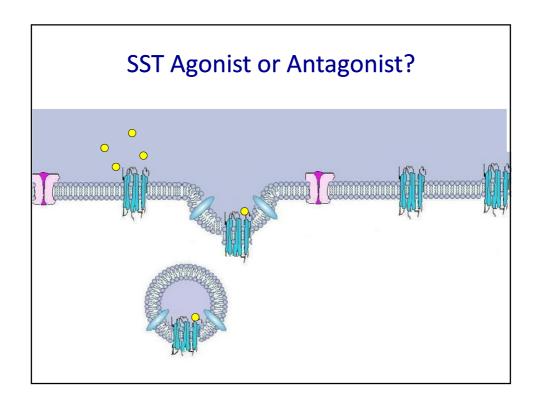
Affinity (IC₅₀) of Somatostatin Analogs for Human Receptors SST_{1-5}

Peptide	SST ₁	SST ₂	SST ₃	SST ₄	SST ₅
SS-28	5.2 ± 0.3	2.7 ± 0.3	7.7 ± 0.9	5.6 ± 0.4	4 ± 0.3
Octreotide	>10000	2.0 ± 0.7	187 ± 55	>1000	22 ± 6
DTPA-OC	>10000	12 ± 2.0	376 ± 84	>1000	299 ± 50
In-DTPA-OC	>10000	22 ± 3.6	182 ± 13	>1000	237 ± 52
DOTA-TOC	>10000	14 ± 2.6	880 ± 32	>1000	393 ± 94
DOTA-TATE	>10000	1.5 ± 0.4	>1000	>10000	>1000
DOTA-LAN	>10000	26 ± 3.4	771 ± 23	>10000	73 ± 12
DOTA-NOC	>1000	2.9 ± 0.1	8.0 ± 2.0	n.a.	10 ± 1.6
NOC-ATE	>1000	3,6 ± 1.6	302 ±137	260 ±95	17 ± 9.9

Reubi et al. Eur J Nucl Med 2000 (and subsequent data)

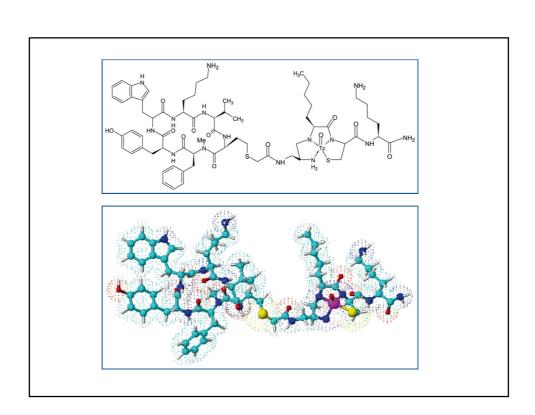

Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals?


P. Antunes • M. Ginj • H. Zhang • B. Waser • R. P. Baum • J. C. Reubi • H. Maecke


Table 1 Affinity profiles of DOTA-octapeptides (IC50) for hsst1-5 receptors

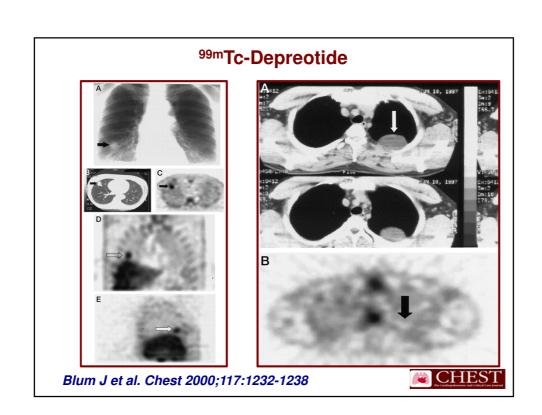
Compound	hsst1	hsst2	hsst3	hsst4	hsst5
Somatostatin-28	3.8±0.3 (10)	2.5 ±0.3 (11)	5.7 ±0.6 (10)	4.2±0.3 (11)	3.7±0.4(11)
Ga-DOTA-NOC	>10,000 (3)	1.9 ± 0.4 (3)	$40.0 \pm 5.8 (3)$	$260 \pm 74 (3)$	$7.2 \pm 1.6 (3)$
In-DOTA-NOC	>10,000 (3)	$2.9 \pm 0.1 (3)^{b}$	$8.0 \pm 2.0 (3)^{b}$	227±18 (3)	11.2±3.5 (3)
Lu-DOTA-NOC	>10,000 (3)	$3.4 \pm 0.4 (3)^{b}$	$12.0 \pm 3.3 (3)^{b}$	747±47 (3)b	$14.0 \pm 3.5 (3)^{b}$
In-DOTA-BOC	>1,000 (2)	$4.4 \pm 0.4 (3)^{b}$	$6.8 \pm 0.3 (3)^{b}$	ND	$10.5 \pm 1.5 (3)^{b}$
Lu-DOTA-BOC	>1,000 (2)	$4.0\pm0.4~(3)^{b}$	$6.3 \pm 0.2 (3)^{b}$	$591 \pm 88 (2)$	$6.5 \pm 0.1 (3)^6$
Ga-DOTA-BOC	$700 \pm 300 (2)$	$1.7 \pm 0.2(3)$	10.5 ± 0.5 (3)	ND	4.4 ± 1.2 (3)
Y-DOTA-NOC-ATE	>1,000 (2)	$4.2 \pm 2.0 (3)$	47 ±1 (3)	ND	$12\pm1(3)^{b}$
Lu-DOTA-NOC-ATE	>1,000 (2)	$3.6 \pm 0.3 (3)^{b}$	$30 \pm 2 (3)$	ND	$15\pm1~(3)^{b}$
Ga-DOTA-NOC-ATE	>1,000 (2)	2.6 ± 0.3 (3)	$113 \pm 80 (2)$	53 ±30 (2)	$25 \pm 4 (3)$
Y-DOTA-BOC-ATE	>1,000 (2)	$2.9 \pm 0.3 (3)^{b}$	$23 \pm 1 (3)$	ND	$7.8 \pm 2.0 (3)$
Ga-DOTA-BOC-ATE	>1,000 (2)	2.0 ± 0.2 (3)	33 ± 23 (2)	35 ± 24 (2)	19.5 ± 13.0 (2)
Somatostatin-28 ^a	5.2 ± 0.3 (19)	$2.7 \pm 0.3 (19)$	$7.7 \pm 0.9 (15)$	5.6±0.4 (19)	4.0 ± 0.3 (19)
Ga-DOTA-TOCa	>10,000	2.5 ± 0.5	613 ± 140	>1,000	73±21
Y-DOTA-TOC ^a	>10,000	11.0 ± 1.7^{b}	389 ± 135	>10,000	114 ± 29
Ga-DOTA-OC ^a	>10,000	7.3 ± 1.9	120 ± 45	>1,000	60 ± 14
Y-DOTA-OC ^a	>10,000	20 ± 2^{b}	27 ±8 ^b	>10,000	57±22
Ga-DOTA-TATE ^a	>10,000	0.20 ± 0.04	>1,000	300 ± 140	377 ± 18
Y-DOTA-TATE ^a	>10,000	1.6 ± 0.4^{b}	>1,000	523 ± 239	187 ± 50 ^b

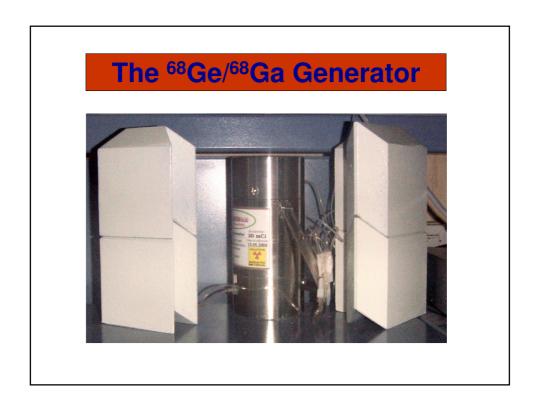
Eur J Nucl Med Mol Imaging. 2007; 34: 982-993.

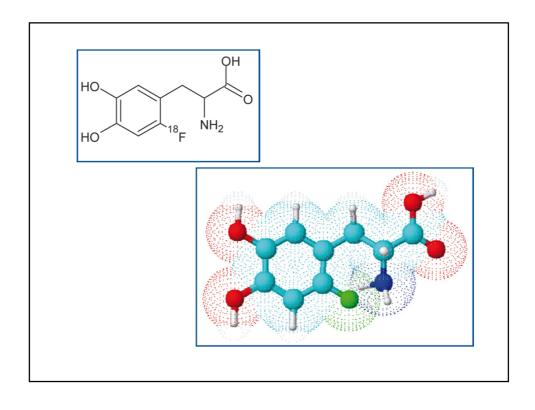


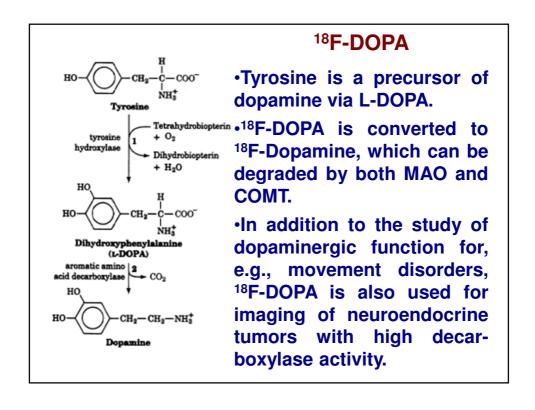
Several Types of Peptide Receptors in Neuroendocrine Tumors

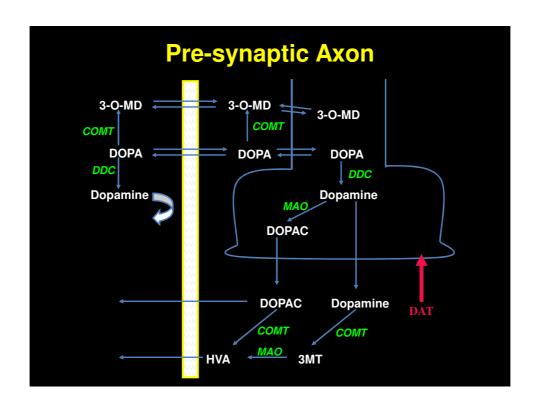
- > Somatostatin receptors
 - SST₁-SST₅
- Bombesin receptorsBB1 or neuromedin B (NMB)


 - BB2 or GRP BB3
- > CCK1 and CCK2 receptors
- > VIP Receptors


 - VPAC1 VPAC2
- > GLP-1 receptors




99mTc-Depreotide


- •Synthetic peptide originally developed as an SST analog for imaging neuroendocrine tumors.
- •High affinity for SST₃ (preferentially expressed by small cell lung cancer).
- •Employed for differential diagnosis of solitary pulmonary nodules (including NSCLC).
- •Uptake possibly linked to infiltration of tumors by lymphocytes expressing SST₃ receptors?

