PET/CT in GI Tract cancer

Esophageal Cancer (EC) Colorectal Cancer (CRC)

Sigrid Stroobants, MD, PhD Departement of Nuclear Medicine University Hospital Antwerp

Outline of this talk

Additional value of whole-body FDG-PET and PET/CT in

- Pre-surgical TNM staging of primary disease (EC- cRc)
- Detection of (early) recurrence (CRC EC)
 - What is still operable?
- Treatment response assessment (EC CRC)

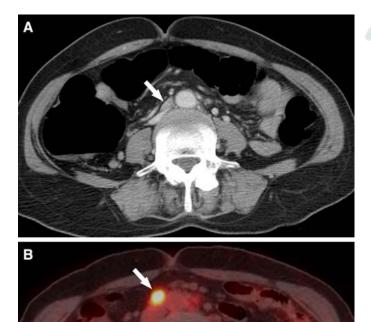
TNM staging of primary disease

T- staging of primary disease

Pre-surgical staging of primary disease T-status

- Detection rate for GI carcinoma's is high
 - FDG uptake is related to
 - cellularity/gram tissue
 - GLUT-1 expression (hypoxia and proliferation)
 - Higher uptake in SSC compared to adenocarcinoma (EC°
 - False negatives occur in
 - small volume disease
 - Flat mucosal lesions
 - mucinous carcinoma's (signet cell carcinomas)
- No additional value of PET with current definitions (~ depth of invasion) because of insufficient anatomical resolution

N- staging of primary disease


Pre-surgical staging of primary disease N-status

- CT = size-based
 - low sensitivity ~ 45-60%, higher with MDCT
 - micrometastasis in normal sized nodes is frequent
- EUS= size, shape and echogenicity
 - sens 65-95%
 - FNAC
- PET or PET/CT
 - few studies in CRC
 - extensively studied in EC

CRC – LN staging

S. S. Shin et al.: Preoperative staging of colorectal cancer; Abdom Imaging (2008) 33:270–277

Sensitivity 29 – 43% Specificity 83 – 96%

UNIVERSITAIR ZIEKENHUIS ANTWERPEN

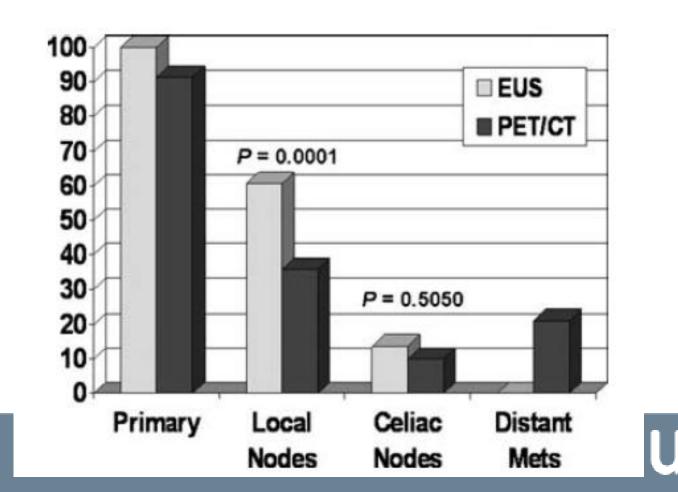
UZA

EC - Nodal staging of primary disease Flamen et al. JCO 2000 N=74

	<u>CT + EUS</u>	<u>PET</u>	<u>p-value</u>
<u>Sensitivity</u>			
N ₁₋₂ M _{+Ly}	15/18 (83%) 6/13 (46%)	4/18 (22%) 10/13 (77%)	p=0.002 NS
Specificity			
N ₁₋₂ M _{+Ly}	5/11 (45%) 20/29 (69%)	10/11 (91%) 26/29 (90%)	NS (p=0.07) p=0.04
<u>Accuracy</u>			
N ₁₋₂ M _{+Ly}	20/29 (69%) 26/42 (62%)	14/29 (48%) 36/42 (86%)	NS (p=0.07) p=0.009

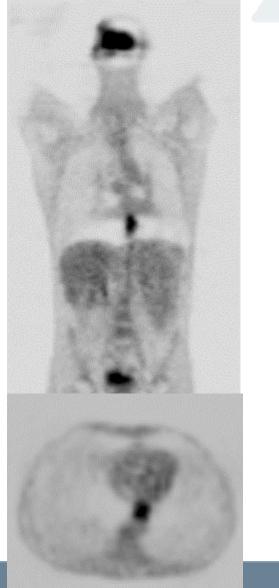
EC - Nodal staging of primary disease

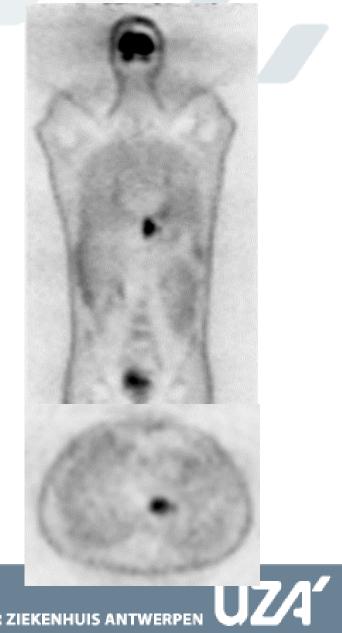
- Meta-analysis van Westreenen JCO 2004
 - 421 patients
 - pooled sensitivity 51% (95% CI 34-69)
 - pooled specificity 84 % (95% CI 76-91)
- PET-CT superior?


Walker et al, Mol Imaging Biol 2010 81 patients, PET/CT and EUS prior to surgery


EC - Nodal staging of primary disease

• Walker et al, Mol Imaging Biol 2010


81 patients, PET/CT and EUS prior to surgery



PET/CT pitfalls

M- staging of primary disease

EC – detection of metastasis (nodes + organs)

Plukker, van Westreenen Best practice and research in clin GE 2006

Table 4. Performance of positron emission tomography (PET) and computed tomography (CT) in the preoperative assessment of distant metastases (stage IV).

Author	PET			СТ			
	Sensitivity (%)	Specificity (%)	Accuracy (%)	Sensitivity (%)	Specificity (%)	Accuracy (%)	
Flanagan et al ²³	72	82	76	71	100	94	
Kole et al ²⁰	67	95	88	100	90	92	
Luketich et al ⁶⁵	69	93	84	46	74	63	
Kato et al ⁶³	32	99	93	23	97	91	
Flamen et al ¹⁸	74	90	82	41	94	71	
Räsänen et al ⁶²	47	89	74	33	96	74	
Kneist et al ⁶⁶	35	87	50	67	13	50	

PET Additional metastases in 4-28% of patients (cervical nodes; bones; liver) CT better for lung and brainM+ Meta-analysis van Weestrenen (2004) pooled sens= 67%, spec 97%

EC – detection of metastasis (nodes + organs)

Is the superiority of PET also true in the PET/CT and MDCT era?

Gilles et al, European Radiology online september 2010

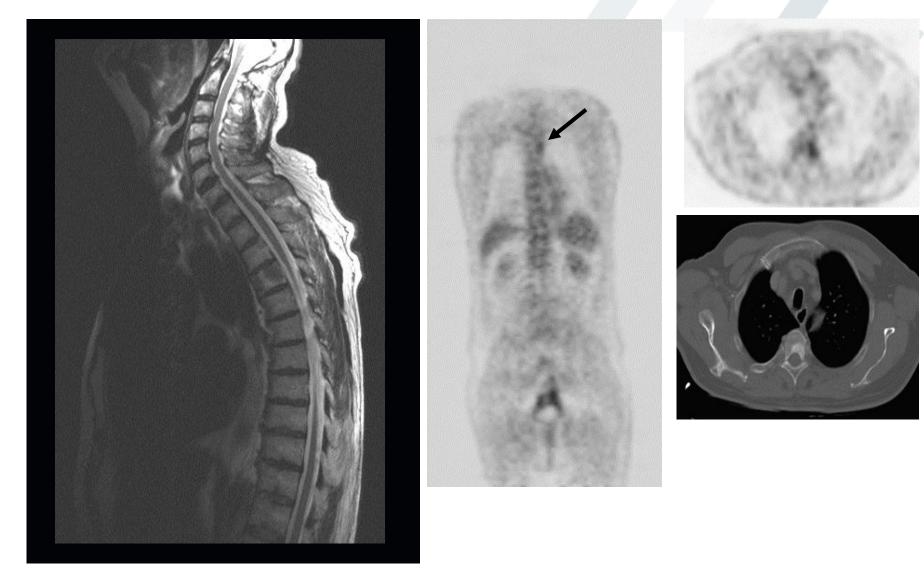
Retrospective analysis on value in 200 consecutive cases

MDCT (16 -128 slice) and PET-CT (16 slice) in preoperative staging

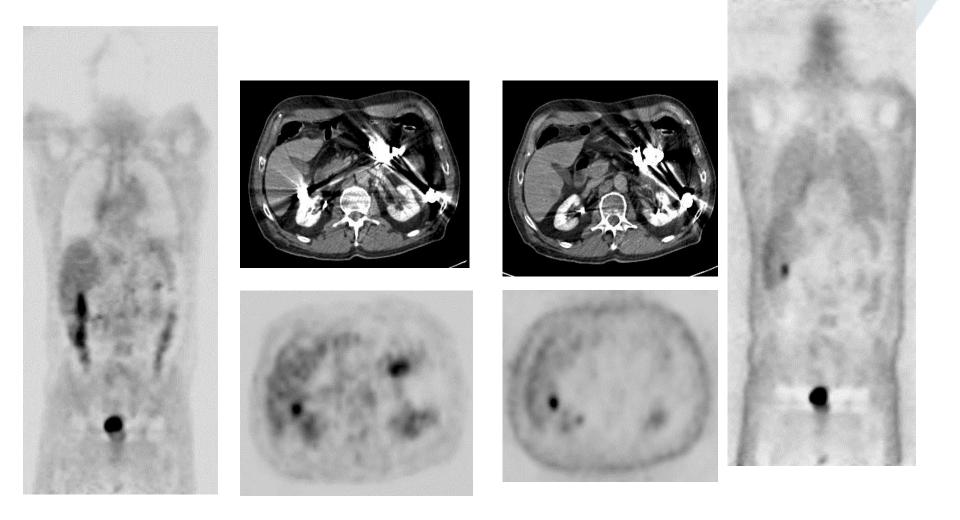
➤ 50/200 pts had metastatic disease and PET+

22/50 negative on MDCT

28/50 equivocal on MDCT


Table 2	Location	of	metastatic	disease	detec ted	by	PET/CT	
---------	----------	----	------------	---------	-----------	----	--------	--

Location of metastatic disease	Number
Distant nodal	36 ^a
Neck	27
Retroperitoneum	13
Axilla	4
Systemic	23 ^b
Liver	11
Bone	9
Lung/pleura	2
Muscle	1
Parotid	1


PET/CT in EC- Staging

PET/CT in EC - Staging

CT attenuation artifacts

EC –Effect of PET on final stage

Table 2 FDG-PET in the pretherapeutic staging of esophageal cancer. Change of stage by FDG-PET after conventional staging by CT scan

Authors	Year	Change UICC stage	% change UICC stage
Flanagan <i>et al.</i>	1997	5/36	14
Rankin et al.	1998	7/25	28
Luketich et al.	1999	21/91	23
Flamen et al.	2000	16/74	22
Heeren et al.	2004	19/74	26
Kato et al.	2005	20/149	13
Stahl et al.	2005	6/40	15
		94/489	19.2%

Ott el al. Review. Diseases of the Esophagus 2006

PET for M-staging in CRC

- Few studies
- Llamas et al, EJNMM 2007
 - Prospective study in 104 patients with potentially operable CRC
 - PET (Ecat Exact) and CT (single slice, 7 mm, slices)

	FDG-PET	СТ
Sensitivity	89% [64–98%]	44% [22-69%]
Specificity	93% [85-97%]	95% [88–98%]
Overall accuracy	92% [85-96%]	87% [78–92%]
PPV	73% [50-88%]	67% [35-89%]
NPV	98% [91-100%]	89% [80–94%]

Table 3 Diagnostic accuracy in M0/M+ staging

Confidence interval [CI]: 95%

- 14 patients were upstaged to stage IV (liver M+, lung M, RP LN)
- Change in patient management in 18%

PET for M-staging in CRC

Floriani et al, meta-analysis of imaging modalities for liver M+ for CRC J . of Magnetic Resonance Imaging 2010 (Studies between 2000-2008)

U	US		СТ		MRI		-PET
sens	spec	sens	spec	sens	spec	sens	spec
86,3	-	82,6	58,6	86,3	87,2	86	97,2

Spiral CT most sensitive technique for detection of lungM+

Use of PET for initial staging CRC is limited Equivocal cases, operabel M+ disease prior to neoadjuvant Chemo

PET/CT for staging primary disease

• EC

- detection of LN distant from the tumor and organ metastasis
- PET/CT routine use in T1b tumors without obvious M+

• CRC

- no routine indication
- characterization of equivocal lesions
- operable M+ prior to CTx to exclude more extended disease

Detection of recurrence

CRC - recurrences

- More treatment options to salvage local relapse or recurrences limited to the liver
 - early detection of relapse to increase cure rates
 sometimes difficult on CT due to treatment induced anatomical alterations
 - exclusions of other metastases

CRC – recurrences

Huebner et al, JNM 2000 Meta-analysis (11 studies)

		Ν	sens	spec	
Whole	Body	281	97%	76%	
Pelvis		366	94%	98%	
Liver					
	Patients	393	96%	99%	
	Lesions	182	91%	97%	

29% change in treatment management

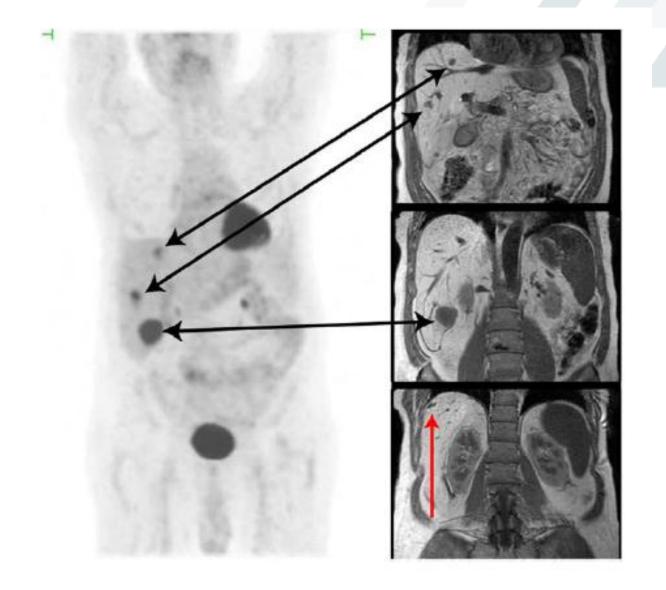
CRC – recurrences

Zhang et al et al, Int. J Cancer, 2009 Meta-analysis (27 studies, 1995-2008))

	sens	spec
Distant M+	91%	83%
LiverM+	97%	98%
Pelvic rec	94%	94%

CRC Local recurrence

1 month later APO +



CRC – recurrences

Wiering et al, cancer 2005; meta-analysis focusing on liver recurrences

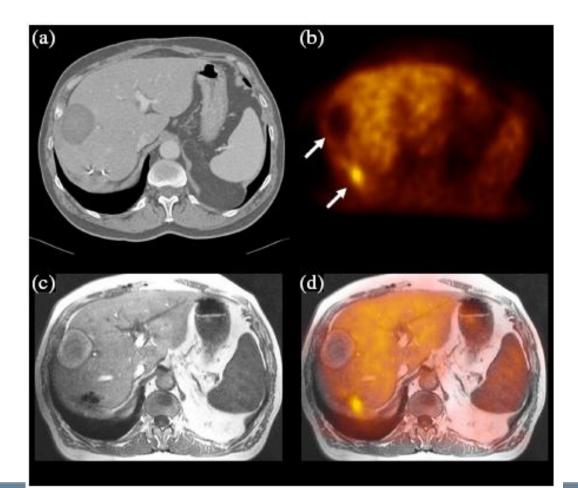
TABLE 4 Sensitivity and Specificity by Diagnostic Modality for the Six Studies with the Highest Scores

	FDG-PET h	epatic lesions		G-PET atic lesions	CT hepa	tic lesions	CT extrahe	epatic lesions
Study	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specifici
Lai et al., 1996 ³²	0.93	0.44	0.92	0.95	1.00	0.14	_	_
Fong et al., 1999 ²⁶	0.71	0.93	0.85	0.91	0.88	1.00	0.30	0.81
Valk et al., 1999 ⁴⁴	0.95	1.00	0.92	0.99	0.84	0.95	0.61	0.96
Imdahl et al., 2000 ²⁹	0.84	0.86	_	_	0.86	0.88	_	_
Ruers et al., 2002 ³⁷	0.65	_	0.95	0.97	0.80	_	0.65	0.94
Langenhoff et al., 2002 ³³	1.00	0.98	_	_	_	_	_	_
Combined studies	0.80	0.92	0.91	0.98	0.86	0.88	0.55	0.96
All studies (n=32	2) 0.88	0.96	0.92	0.97	0.82	0.84	0.61	0.91

CRC – Liver M

Spatz et al, Int J Colorectal Dis 2010

Retrospective analysis in 34 ptn with liverM+ of CRC scheduled for surgery

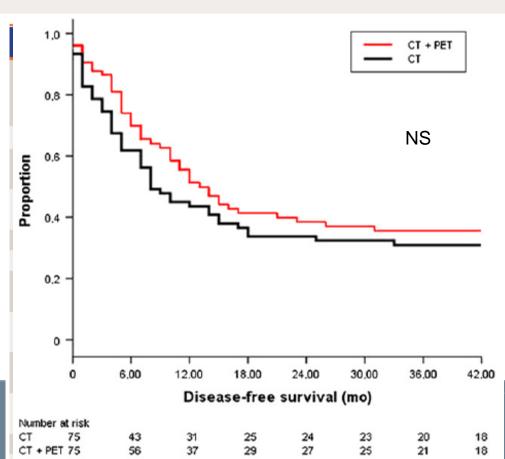

Correlation of imaging with hostopatholgy

Imaging: 16 slice MDCT or 1.5 T MR ; 16 slice PET/CT and IUS

	Chemotherapy + (<i>n</i> =17)	Chemotherapy $ (n=17)$
Number of metastasis found (histopathology)	37	25
Mean diameter	3 cm	3.2 cm
PET		
sensitivity	0.63 (0.45-0.78)	0.92 (0.72-0.99)
PPV	0.96 (0.76-0.99)	1 (0.82–1)
CT/MRI		
Sensitivity	0.65 (0.48-0.80)	0.64 (0.43-0.81)
PPV	0.92 (0.72-0.99)	0.89 (0.64-0.98)
IUS		
Sensitivity	0.94 (0.79-0.99)	1.0 (0.83-1.0)
PPV	0.94 (0.79-0.99)	0.96 (0.78-0.99)

CRC liver recurrences

Vogel et al, Cancer Imaging 2005


Patient with prior RFA (upper arrow) and liver resection for liver metastasis of colon carcinoma. Both CT (a) and MRI (c) are difficult to interpret The PET image (b) clearly shows a recurrent liver metastasis (lower arrow), which could be localized only after image fusion with MRI (d). This permitted guided locoregional therapy

Improved Selection of Patients for Hepatic Surgery of Colorectal Liver Metastases with ¹⁸F-FDG PET: A Randomized Study

TABLE 1. Demographic Data

Variable		Experimental arm CT plus PET; $n = 75$	5) P
Mean age (y)	62.9	62.6	0.94
Age range (y)	37.9–79.9	32.8-78.1	
Sex (female:male)	19:56	27:48	0.21
Primary tumor			0.87
pN0	34	32	
pN ≥ 1	41	43	
DFS		05	0.40
<12 mo	29	35	
≥12 mo Number of	46	40	1.0
hepatic tumors*			1.0
1	41	42	
>1	34	33	
Size of greatest			0.84
hepatic tumor*			
<50 mm	60	58	
>50 mm	15	17	
CEA preoperatively			1.0
<200 ng/mL	75	75	
≥200 ng/mL	—	—	
Fong criteria		_	0.76
0 1	9 17	7	
	29	24 24	
2 3	19	19	
4	1	1	
5	_	_	
-			

van der Sijp², Rudi M. Roumen³, Koert P. de Jong⁴, ⁷, Paul F.M. Krabbe⁸, and Wim J.G. Oyen⁹

JNM 2009

CRC – elevated **CEA**

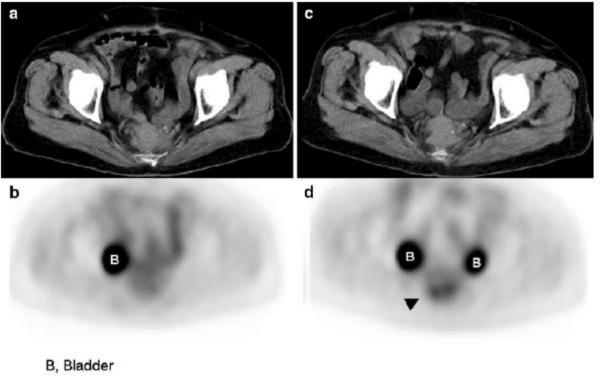
Metser et al, Nuc Med and Biology 2009

Retrospective analysis in 55 ptn with elevated CEA after surgery for CRC and underwent PET-CT and 64 slice MDCT. In 65% of the patients, malignancy was diagnosed.

MDCT					
True-Positive	True-Negative	False-Positive	False-Negative		
36		0	17		
	4	2			
	1	1			
			1		
		True-Positive True-Negative	True-Positive True-Negative False-Positive		

TABLE 3: Results of Tumor Site-Based Analysis of Accuracy (n = 62)

Note—Values are number of tumor sites.


	sens	spec
PET/CT	98%	75%
MDCT	67%	62%

presacral recurrence (n = 5) LN < 1cm (n = 4)peritoneal deposits (n = 3)recurrences at RFA sites (n = 3)abdominal wall (n = 2)

CRC – elevated CEA

Kyoto et al, Ann Nuc Med 2010

Retrospective analysis in 57 ptn with elevated CEA after surgery for CRC, 13 pts multiple scans

CEA 7ng/ml

6 months later CEA 14,2ng/ml

EC - Recurrences

- Few studies
- Guo et al. JNM 2007
 - Retrospective analysis of 56 patients who underwent PET/CT for suspicion of recurrence after curative therapy for Sq EC

	Confirmed recurrent sites				
Diagnostic value	+	_	Sensitivity (% [n])	Specificity (% [n])	Accuracy (% [n])
PET/CT locally*	32	12	96.9 (31/32)	50.0 (6/12)	84.1 (37/44)
PET/CT regionally	19	11	89.5 (17/19)	81.8 (9/11)	86.7 (26/30)
PET/CT distantly	21	14	90.5 (19/21)	92.9 (13/14	91.4 (32/35)
PET/CT overall	72	37	93.1 (67/72)	75.7 (28/37)	87.2 (95/109)
Patient-based analysis	45	11	95.6 (43/45)	54.5 (6/11)	87.5 (49/56)

 TABLE 2

 Diagnostic Value of PET/CT for Detecting Recurrent ESCC

*Including primary tumor, esophagogastric anastomosis, gastric pull-up, and adjacent tissue to all above sites.

PET for detection of Recurrence

• CRC

- High accuracy for local relapse
- Similar accuracy than CT/MR for hepatic M+
- CT better for lung and brain M+
- PET/CT= best test to exclude other M+ prior to salvage R/
 - !!! Perform PET BEFORE the start of chemotherapy!!!

• EC

- Few studies
- EUS+FNAC for local relapses
- PET-CT to exclude other M+

Therapy response assessment

EC – neoadjuvant setting

CRC – neoadjuvant setting Local liver M+ therapy

Definition of PET response

- No guidelines for definition of PET response
- Different definitions/methodology
 - Standard of reference (path response vs survival)
 - Threshold vs Fractional change
 - Which PET parameter
 - SUV of MRglu
 - Mean or max values
 - Definition of overall response
- Optimal Timing
 - Early vs Late
 - Effect of concommittant RT

UNIVERSITAIR ZIEKENHUIS ANTWERPEN 🔱

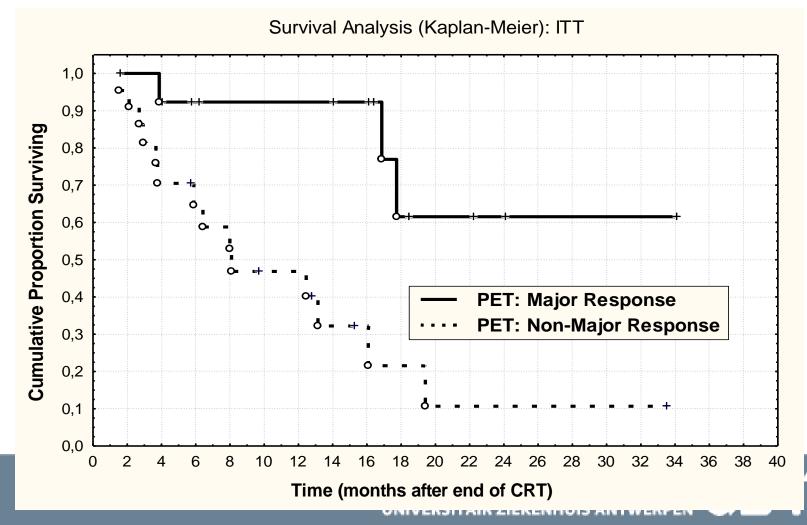
Esophageal Cancer

Flamen et al, Annals of Oncology 2002

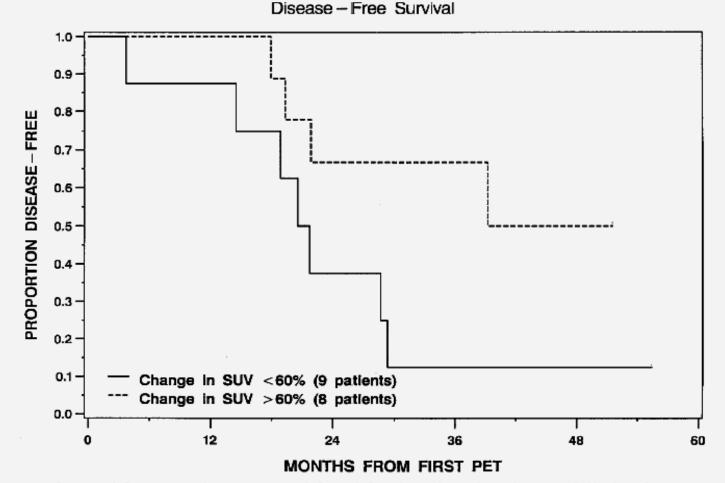
Design

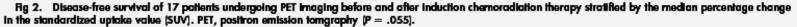
36 patients: cT₄ EC without organ metastases

PET before and 4 weeks after chemoradiation


PET response = > 80% reduction of the FDG uptake (Tumor to Liver Ratio) in prim T, no LN, no new lesions

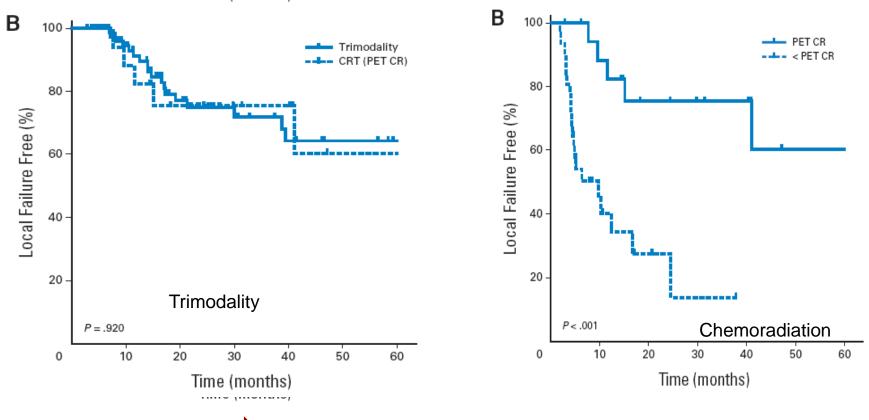
Correlation with patholgical response and survival


PET in Esophageal cancer -Response after induction treatment


Flamen et al, Annals of Oncology 2002

PET in Esophageal cancer -Response assessment after induction treatment

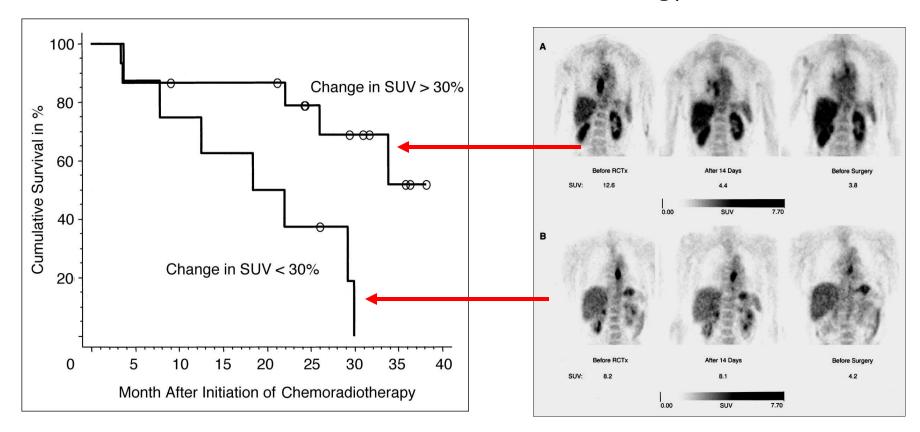
Downey et al, JCO 2003



UNIVERSITAIR ZIEKENHUIS ANTWERPEN

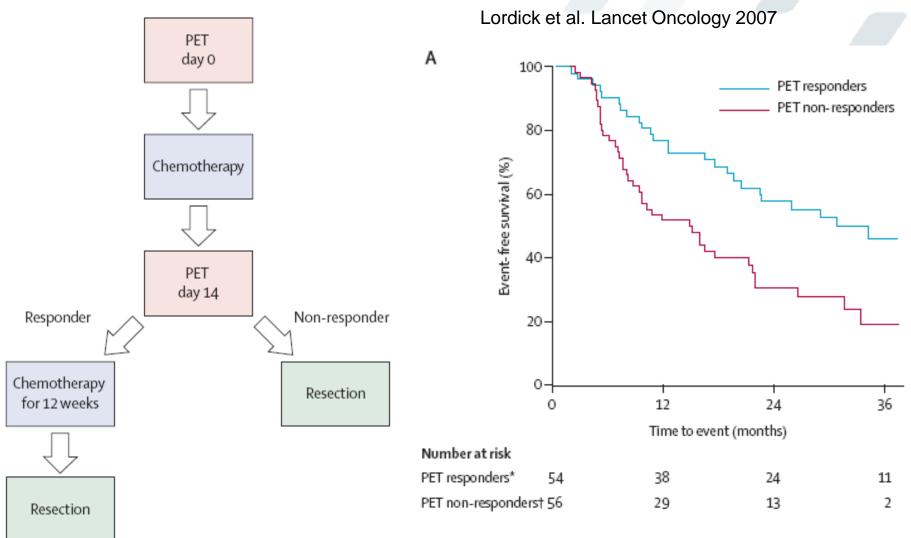
PET in EC- Response after induction

Monjazeb et al, J Clin Oncology, nov 2010 Retrospective analysis in 163 ptn EC receiving ichemoradiation with or without surgery PET at the end of CRT; PET positive if SUV max >3 Effect of PET-CR on outcome (local faiilure and OS)



Use PET to decide who need additional surgery?

* No correlation between pathological response and outcome. PET-CR rate higher in SSC and Adeno but association with outcome=identical UNIVERSITAIR ZIEKENHUIS ANTWERPEN


EC- PET early during chemoradiation

Wieder et al, Journal of Clinical Oncology, 2004

UNIVERSITAIR ZIEKENHUIS ANTWERPEN

MUNICON Trial

UNIVERSITAIR ZIEKENHUIS ANTWERPEN

UZA'

PET for response evaluation in rectal cancer

Amthauer et al, EJNMI 2004

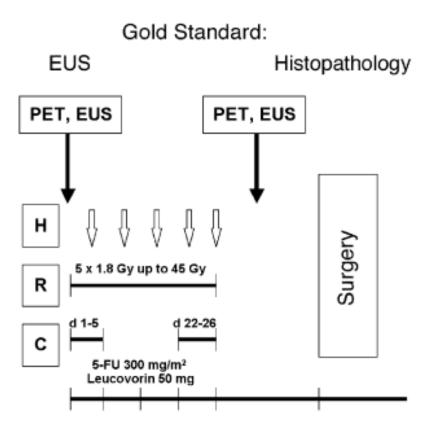


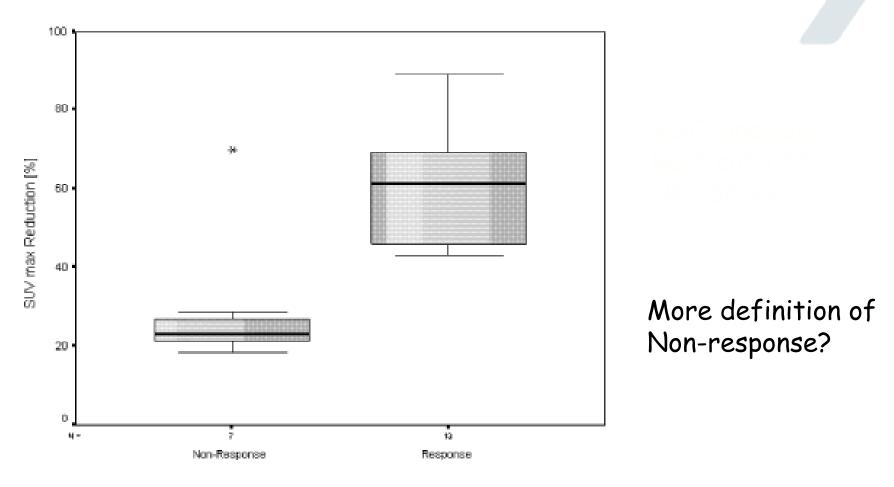
Fig. 1. Study design. *H*, Hyperthermia; *R*, radiotherapy; *C*, chemotherapy. 5-FU is escalated to 350 mg/m^2 on days 22-26 when not contraindicated by toxicity N=20 rectal ca

PET response 2-4 w after SUV max EORTC PET criteria

Path response T-status Downstaging T or Size /invasion depth > 30%↓

UNIVERSITAIR ZIEKENHUIS ANTWERPEN

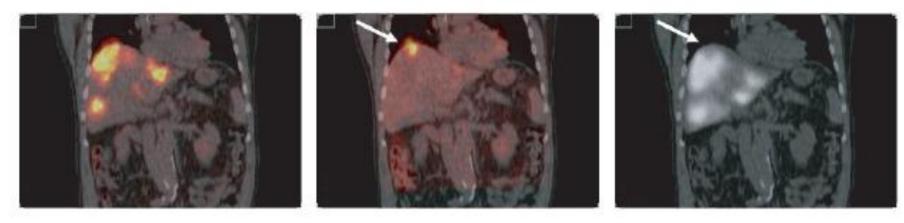
Amthauer et al, EJNMI 2004


Table 3. FDG uptake by the tumour before and after neoadjuvant therapy for responders and non-responders as classified by the gold standard

	SUV _{max} before	SUV _{max} after	Fisher's exact test	SUV _{max} reduction (%)
Responder (<i>n</i> =13) Non-responder (<i>n</i> =7) Total (<i>n</i> =20)			P=0.018	59.8±14.6 29.7±18.1 49.3±21.3

In patients with good pathological response, FDG uptake can remain high due to accompaning inflammatory reactions

Amthauer et al, EJNMI 2004


Gold standard: Response/Non-Response

UNIVERSITAIR ZIEKENHUIS ANTWERPEN UZ

PET for response after radioactive microspheres

Flamen et al. physics in med and biol 2008

Predicting metabolic response post radioembolization

PET pre

PET 6w post

MAA pre

6597

FDG-PET in **GI** cancer

- Esophageal Cancer
 - Strong indication for primary staging to exclude M1 disease
 - Recurrences
 - locally: high false positive rate
 - Best technique to exclude M+ if salvage surgery is considered
 - Promising results for PET response evaluation of neoadjuvant therapy

FDG-PET in GI cancer

• PET in CRC

- Limited indications for primary staging
 - Equivocal lesions on CT/MR
 - resectable M+ to exclude more extensive disease
- Strong indication for recurrence detection/staging
 - Rising tumor marker
 - Patient selection for salvage surgery
 - ! Perform PET prior to chemotherapy
- Response evaluation
 - For local liver treatments
 - ? After neoadjuvant therapy in rectal cancer (hampered by inflammation)

