

Provisional Programme Controversies and Problems in Surgery Symposium - University of Pretoria 16TH SYMPOSIUM 05-06 OCTOBER 2012

Results of CRS and HIPEC in Peritoneal Mesothelioma, Ovarian and Gastric PSM

Marcello Deraco M.D.

Responsible

Peritoneal Surface Malignancies

FONDAZIONE IRCCS ISTITUTO NAZIONALE DEI TUMORI

Bresidenza del Consiglio dei Ministri

INTRODUCTION

- aggressive malignancy arising from mesothelial cells within the serosal lining of the peritoneum;
- characterized macroscopically by thousands of tumor nodules that may coalesce to form plaques, masses or layers to cover the entire peritoneal surface;
- present epidemiological, biological and clinical behaviours different from its most know and frequent pleural counterpart as well as a better prognosis;
- low sensitivity and specificity of the diagnosis explain the misdiagnosed of Peritoneal Mesothelioma as a neoplasm originating from other abdominal organs.

EPIDEMIOLOGY AND ETIOLOGY

- age standardized incidence rates among men range from 0.5 to about 3 cases per million population (SEER and Eurocim data);
- 5-10% increase in annual mortality rate will be observed worldwide at least until 2020;
- the disease has likely already reached the incidence peak in the USA. On the contrary, in Europe and Australia the peaks is expected during this decade;
- 58% of peritoneal mesothelioma directly related to past asbestos exposure among men;
- only 20% of women with peritoneal mesothelioma had past asbestos exposure.

HISTOLOGY

Localized peritoneal mesothelioma

- Benign
 - adenomatoid
 - localized fibrous

Diffuse peritoneal mesothelioma

- Borderline
 - multicystic (MCPM)
 - well-differentiated papillary (WDPM)
- Malignant (DMPM)
 - epithelioid (75%)
 - poorly differentiated (6%)
 - biphasic (6%)
 - sarcomatoid (13%)

Guidelines for Pathologic Diagnosis of Malignant Mesothelioma

2012 Update of the Consensus Statement from the International Mesothelioma Interest Group

 Aliya N. Husain, MD; Thomas Colby, MD; Nelson Ordonez, MD; Thomas Krausz, MD; Richard Attanoos, MB, BS; Mary Beth Beasley, MD; Alain C. Borczuk, MD; Kelly Butnor, MD; Philip T. Cagle, MD; Lucian R. Chirieac, MD; Andrew Churg, MD; Sanja Dacic, MD, PhD; Armando Fraire, MD; Francoise Galateau-Salle, MD; Allen Gibbs, MD; Allen Gown, MD; Samuel Hammar, MD; Leslie Litzky, MD; Alberto M. Marchevsky, MD; Andrew Nicholson, MB, BS; Victor Roggli, MD; William D. Travis, MD; Mark Wick, MD

Table 4. Histologic Subtypes and Patternsaof Malignant Mesothelioma					
Epithelioid mesothelioma					
Tubulopapillary					
Micropapillary					
Trabecular					
Acinar					
Adenomatoid					
Solid					
Clear cell					
Deciduoid					
Adenoid cystic					
Signet ring cell					
Small cell					
Rhabdoid					
Pleomorphic					
Sarcomatoid mesothelioma					
Conventional, spindle cell					
Desmoplastic					
Heterologous differentiation (osteosarcomatous,					
chondrosarcomatous, etc)					
Lymphohistiocytoid (may also be classified as epithelioid)					
Biphasic/mixed					

^a Subtype must be given in the diagnosis, but histologic pattern, epithelioid or sarcomatous, may be described in a comment or microscopic description.

IMIG2010 The 10th International Conference of the International Mesothelioma Interest Group

"A rare case of papillary well-differentiated peritoneal mesothelioma with transition into diffuse malignant mesothelioma."

Original Article

A Novel Tumor-Node-Metastasis (TNM) Staging System of Diffuse Malignant Peritoneal Mesothelioma Using Outcome Analysis of A Multi-institutional Database

Tristan D. Yan, BSc, (Med), MBBS, PhD¹; Marcello Deraco, MD²; Dominique Elias, PhD³; Olivier Glehen, PhD⁴; Edward A. Levine, MD⁵; Brendan J. Moran, MD⁶; David L. Morris, PhD⁷; Terence C. Chua, MBBS⁷; Pompiliu Piso, PhD⁸; Paul H. Sugarbaker, MD⁹; and Peritoneal Surface Oncology Group*

76

26

66

41

29

Original Article

A Novel Tumor-Node-Metastasis (TNM) Staging System of Diffuse Malignant Peritoneal Mesothelioma Using Outcome Analysis of A Multi-institutional Database

Tristan D. Yan, BSc, (Med), MBBS, PhD¹; Marcello Deraco, MD²; Dominique Elias, PhD³; Olivier Glehen, PhD⁴; Edward A. Levine, MD⁵; Brendan J. Moran, MD⁶; David L. Morris, PhD⁷; Terence C. Chua, MBBS⁷; Pompiliu Piso, PhD⁸; Paul H. Sugarbaker, MD⁹; and Peritoneal Surface Oncology Group*

Stage	Tumour	Node	Metastasi
			S
I	T1	N0	MO
II	T2-3	N0	MO
ш	T4	N0-1	M0-1
	T1-4	N1	M0-1
	T1-4	N0-1	M1

Malignant peritoneal mesothelioma: a multicenter study on 81 cases

V. de Pangher Manzini¹*, L. Recchia¹, M. Cafferata², C. Porta³, S. Siena⁴, L. Giannetta⁴, F. Morelli⁵, F. Oniga⁶, A. Bearz⁷, V. Torri⁸ & M. Cinquini⁸

¹ Division of Medical Oncology, Department of Internal Medicine and Oncology, Monfalcone Hospital, Monfalcone; ²Division of Medical Oncology, Department of Internal Medicine and Oncology, Casale Monferrato Hospital, Casale Monferrato; ³Department of Medical Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, San Matteo University Hospital Foundation, Pavia; ⁴The Falck Division of Medical Oncology, Niguarda Ca' Granda Hospital, Milan; ⁵Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, San Matteo University Hospital Foundation, Pavia; ⁴The Falck Division of Medical Oncology, Niguarda Ca' Granda Hospital, Milan; ⁵Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Casa Solfevo della Sofferenza, San Giovanni Rotondo; ⁶Division of Medical Oncology, Department of Oncology, Venice-Mestre Hospital; ⁷Department of Medical Oncology, Centro di Riferimento Oncologico - Istituto di Ricovero e Cura a Carattere Scientifico, Aviano and ⁸Department of Oncology, Mario Negri Institute, Milan, Italy

14 Italian institutions (1982-2007);	Symtoms	Total		
	Cymtoms	Patients	п	%
•81 patients:57(70%) M, 24(30%) W;	Ascites	62	81	77
(10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Abdominal pain	56	81	69
•mean age. 64(19–65). 65/10, 66/00,	Asthenia	35	81	43
•Asbestos Exposure: 59.6%/M_33.3%/W	Weight loss	26	81	32
	Anorexia	24	81	3(
•Monfalcone (shipyards), Casale Monferrato(Eternit factory);	Abdominal mass	24	81	3(
	Fever	18	81	22
•sCT(45),Surgery+sCT(21), Surgery(8), CRS+HIPEC(7)	Diarrnea	14	81 81	1/
	vomung	12	01	1:

1.00 0.95 Events Totals 0.90 27 69 0.85 χ² (log-rank); 9,4017 (p=0,0091) 0.80 0.75 0.70 0.65 0.60 0.55 0.50 Mean:13 mts (12-36) 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 Survival 0.05 0.00 0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 months Patients at Risk 69 59 49 42 38 34 29 26 22 21 19 17 13 11 10 10 10 9 8 8 8 8 8 8 8

luo o oriuo or	Classic pres	Classic presentation		
imaging	Patients	Total	%	
CT ascites	47	59	80	
CT abdominal mass	19	59	32	
CT peritoneal thickening	37	59	63	
CT mesenterial thickening	17	59	29	
ECT ascites	32	59	54	
ECT abdominal mass	11	59	19	
ECT peritoneal thickening	5	59	8	

Annals of Oncology Advance Access published July 27, 2009

Comprehensive management of diffuse malignant peritoneal mesothelioma

P.H. Sugarbaker*, T.D. Yan, O.A. Stuart, D. Yoo

Program in Peritoneal Surface Oncology, Washington Cancer Institute, Washington Hospital Center, 106 Irving Street, NW, Suite 3900, Washington, DC 20010, USA

Authors ^{Ref.}	Year	No. of patients	Median survival (months)
Chailleux et al.5	1988	11/167	10 ^a
Antman et al.6	1988	37/180	15 ^a
Sridhar et al.7	1992	13/50	9.5 ^a
Markman et al. ⁸	1992	19	9
Yates et al.9	1997	14/272	14 ^a
Neumann et al.10	1999	74	12 (mean)
Eltabbakh et al. ¹¹	1999	15 ^b	12.5

Median survival of DMPM using traditional treatment modalities

Modian	eurvival	of	DMPM	using	CRS.		FC
INCUIAII	Suivivai	VI		uailiy	UND -	F CUU	LU

Authors ^{Ref.}	Year	No. of patients	Median survival (months)
Park et al. ¹²	1999	18	26
Loggie et al.13	2001	12	34
Kerrigan et al.14	2002	25 ^a	30
Feldman et al.15	2003	49	92
Sugarbaker et al.16	2003	67	68
Brigand et al.17	2005	15	46.7
Deraco et al.18	2005	49	N/A
Wagmiller et al. ¹⁹	2005	27	68
Yan and Sugarbaker ²⁰	2005	65 ^b	79

Journal of Surgical Oncology 2008;98:268-272

Consensus Statement on Peritoneal Mesothelioma

MARCELLO DERACO, MD¹* DAVID BARTLETT, MD,² SHIGEKI KUSAMURA, MD, PhD,¹ and DARIO BARATTI, MD,¹

¹Department of Surgery, National Cancer Institute, Milan, Italy ²Department of Surgery, Division of Surgical Oncology, UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania

Histology	Treatment
Multicystic	CRS + HIPEC
Papillary Well Differentiated	CRS + HIPEC
Epithelial Malignant	CRS + HIPEC±EPIC + sCT
Biphasic/Sarcomatoid	CRS + HIPEC±EPIC + sCT

Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Malignant Peritoneal Mesothelioma: Multi-Institutional Experience

Tristan D. Yan, Marcello Deraco, Dario Baratti, Shigeki Kusamura, Dominique Elias, Olivier Glehen, François N. Gilly, Edward A. Levine, Perry Shen, Faheez Mohamed, Brendan J. Moran, David L. Morris, Terence C. Chua, Pompiliu Piso, and Paul H. Sugarbaker

Chemoth	HIP	PEC	EPIC	
agent(s)	n	%	n	%
Cisplatin + Doxorubi cin or Cisplatin + Mitomyci n C	325	87	16	17
Cisplatin alone	19	5	-	-
Mitomyci n C	26	7	-	-
Paclitaxel	-	-	77	82
Others	2	1	1	1
Total	372	100	94	100

•Patients: 405

Institutions: 7

- •Median follow-up:33 (1-235)
- •Mean age: 50 ys
- •Epithelioid: 318 (79%)
- •Biphasic or Sarcomatoid: 48 (12%)
- •Positive Lymph node: (6%)
- •Extra-abdominal metastases:(3%)
- •CC: 0=102(25%); 1= 85(21%);
- 2: 86 (21%); 3= 39(10%)

J Clin Oncol 27. © 2009 by American Society of Clinical Oncology

Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Malignant Peritoneal Mesothelioma: Multi-Institutional Experience

Tristan D. Yan, Marcello Deraco, Dario Baratti, Shigeki Kusamura, Dominique Elias, Olivier Glehen, François N. Gilly, Edward A. Levine, Perry Shen, Faheez Mohamed, Brendan J. Moran, David L. Morris, Terence C. Chua, Pompliu Piso, and Paul H. Sugarbaker

Months after Surgery

Multivariate analysis

Variable	hazard ratio	95% confidence interval	P Value
Epithelial Subtype	27.547	2.905 – 10.360	p < 0.001
Absence of Lymph Node Metastasis	13.929	1.749 – 6.017	p < 0.001
CCR-0/1	24.222	2.008 – 5.054	p < 0.001
HIPEC	9.489	0.219 – 0.713	p = 0.002

J Clin Oncol 27. © 2009 by American Society of Clinical Oncology

original article

Importance of gender in diffuse malignant peritoneal mesothelioma

C. Cao^{1,2}, T. D. Yan^{1,2*}, M. Deraco³, D. Elias⁴, O. Glehen⁵, E. A. Levine⁶, B. J. Moran⁷, D. L. Morris⁸, T. C. Chua⁸, P. Piso⁹ P. H. Sugarbaker¹⁰; Peritoneal Surface Malignancy Group[†]

¹The Baird Institute for Applied Heart and Lung Surgical Research, Sydney; ²Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia; ³National Cancer Institute, Milan, Italy; ⁴Department of Surgical Oncology, Institut Gustave Roussy, Villejuif; ⁵Department of Surgical Oncology, Hospices Civils de Lyon and Universite Lyon, Centre Hospitalier Lyon Sud, Pierre Benite, France; ⁶Department of Surgical Oncology, Wake Forest University, Winston-Salem, USA; ⁷North Hampshire Hospital, Basingstoke, UK; ⁸Department of Surgery, St George Hospital, Sydney, Australia; ⁹University Medical Center, Regensburg, Germany; ¹⁰Department of Surgical Oncology, Washington Cancer Institute, Washington, USA

Received 7 July 2011; accepted 20 September 2011

Better Outcomes in Women

Multicystic and Well-differentiated Papillary Peritoneal Mesothelioma Treated by Surgical Cytoreduction and Hyperthermic Intra-peritoneal Chemotherapy (HIPEC)

D. Baratti, MD,¹ S. Kusamura, MD,¹ D. Nonaka, MD,² G. D. Oliva, MD,¹ B. Laterza, MD,¹ and M. Deraco, MD¹

FIG. 1. Overall (heavier line) and progression-free survival (lighter line) in 12 patients treated with cytoreduction and HIPEC for multicystic and well-differentiated peritoneal mesothelioma.

FIG. 2. Progression-free survival after cytoreduction with HIPEC for multicystic and well-differentiated peritoneal mesothelioma (heavier line) and after 11 debulking procedures performed in seven patients during their previous clinical history (lighter line) (P = .0156).

Peritoneal Surface Malignancies Program: The Team

- Experimental Oncology Unit
- (N Zaffaroni)
- Raffaella Villa
- Marzia Pennati
- Cinzia De Marco
- Mara Binda
- Dept Anestesiology (Prof. Langer)
- Luca Fumagalli
- Medical Oncology Rare Tumor
 Unit (P Casali)
- Rossella Bertulli
- PSM UNIT (M.Deraco)
- Dario Baratti
- Shigeki Kusamura

- Dept. Pathology (G. Pelosi)
- Silvana Pilotti
- Antonello Cabras
- Federica Perrone
- Genny Jocollé
- Nutrition Unit (C Gavazzi)
- A Sironi
- ICU (M Favaro)
- Valerio Costagli
- Fortunato D'Elia
- Renato Manzi
- Gabriella Perego
- Maurilia Rizzi
- Marco Faustini

FONDAZIONE IRCCS ISTITUTO NAZIONALE DEI TUMORI

www.marcelloderaco.com

Peritoneal Mesothelioma

Multimodality Treatment with CRS and HIPEC

Patients: 155

Median estimated follow-up: 54.8 months Median actuarial survival: 71.9 months 5-year actuarial survival: 55.6% (47%) 50% of patients: Cured

Mean duration of operations: 577 Min. Mean Peritoneal cancer index: 19 (0-39) G3-5 Morbidity rate: 33.5%

Sotto l'alto patrocinio

Presidenza del Consiglio dei Ministri

Peritoneal Surface Malignancies Program

FONDAZIONE IRCCS ISTITUTO NAZIONALE DEI TUMORI

FUTURE DIRECTIONS

MicroRNAs;

Telomere maintenance mechanisms:

Cancer stem cells:

RTKs;

Cytotoxic activity of new biological drugs

Mesothelin and Osteopontin

Etiology

Personalised Therapy and Translational Research

Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma

Federica Perrone ^a, Genny Jocollè ^a, Marzia Pennati ^b, Marcello Deraco ^c, Dario Baratti ^c, Silvia Brich ^a, Marta Orsenigo ^a, Eva Tarantino ^a, Cinzia De Marco ^b, Claudia Bertan ^a, Antonello Cabras ^a, Rossella Bertulli ^d, Marco Alessandro Pierotti ^e, Nadia Zaffaroni ^b, Silvana Pilotti ^{a,*}

•study period: 2007-2008;

•frozen surgical samples specimens from 20 patients treated by CRS and HIPEC

- •100% expression/ 90-75% phosphorylation of EGFR and PDGFRB;
- •85% expression/45%phosphorylation of PDGFRA;
- •absence of RTK mutation and amplification;
- •activation/expression of ERK1/2, AKT and
- mTOR, together with S6 and 4EBP1, in almost all the DMPMs;
- •No KRAS/BRAF mutations,
- •PI3KCA mutations/amplifications or PTEN;

Eur J Cancer (2010)

inactivation were observed.

Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritoneal mesothelioma

Federica Perrone^a, Genny Jocollè^a, Marzia Pennati^b, Marcello Deraco^c, Dario Baratti^c, Silvia Brich^a, Marta Orsenigo^a, Eva Tarantino^a, Cinzia De Marco^b, Claudia Bertan^a, Antonello Cabras^a, Rossella Bertulli^d, Marco Alessandro Pierotti^e, Nadia Zaffaroni^b, Silvana Pilotti^{a,*}

Cytotoxic activity of gefitinib, sorafenib and RAD001 in a peritoneal mesothelioma cell line

•STO cell line (KRAS mutation G12D)

•resistant to gefitinib

•and sensitive to sequential treatment with RAD001 and sorafenib;

Eur J Cancer (2010)

PERITONEAL MESOTHELIOMA: CONCLUSION

DMPM appears as a disease characterized by various types of presentation, and by a poor prognosis;

comparing with pleural mesothelioma:

•similar pathologic behavior

•higher rate of women

•lower mean age

lower association of asbestos exposure

•higher rate of resecability

•better prognosis

CRS + HIPEC IS THE STANDARD OF CARE

CPP better result vs SPP

CC-0 vs CC-1 correlated to failure in critical anatomical areas, suggesting the need for maximal cytoreductive surgical efforts

sCT reccomended but differences beetwen pre or post operative

Research Programs are neded

Epithelial ovarian cancer: Natural History

Primary EOC Treatment

Equinn W. Munnell

The changing prognosis and treatment in cancer of the ovary

A report of 235 patients with primary ovarian carcinoma 1952-1961

more extensive surgery and that the basic concept of surgery in cancer of the ovary should be the maximum surgery possible, when necessary resorting to omentectomy, appendectomy, and resection of localized peritoneal or intestinal metastases in addition to total hysterectomy and bilateral salpingo-oophorectomy.

> recent 5 year survival rate of 40 per cent represents a significant improvement over the 28 per cent survival rate for the two previous studies. The reports analyzes the results and concludes the improvement was not due to earlier diagnosis or to a more favorable distribution of cases or to chemotherapy. It concludes that the improvement was due to the more frequent use of postoperative irradiation as well as to more aggressive and more extensive surgery and that the basic concept of surgery in cancer of the ovary should be the maximum surgery possible, when necessary resorting to omentectomy, appendectomy, and resection of localized peritoneal or intestinal metastases in addition to total hysterectomy and bilateral salpingo-oophorectomy.

> > Munnell. Am J Obstet Gynecol 1968; 100: 790.

Primary Surgical Treatment Paradigms

The Contemporary Divergence

Primary Cytoreductive Surgery

Simple Procedures

Pelvis TAH+BSO Pelvic lymph node excision Peritoneal nodules Peritonectomy

<u>Abdomen</u>

Infracolic omentectomy

Para-aortic node excision

Peritoneal nodules

Segmental bowel resection

ORIGINAL ARTICLE

Neoadjuvant Chemotherapy or Primary Surgery in Stage IIIC or IV Ovarian Cancer

Ignace Vergote, M.D., Ph.D., Claes G. Tropé, M.D., Ph.D., Frédéric Amant, M.D., Ph.D., Gunnar B. Kristensen, M.D., Ph.D., Tom Ehlen, M.D., Nick Johnson, M.D., René H.M. Verheijen, M.D., Ph.D., Maria E.L. van der Burg, M.D., Ph.D., Angel J. Lacave, M.D., Pierluigi Benedetti Panici, M.D., Ph.D., Gemma G. Kenter, M.D., Ph.D., Antonio Casado, M.D., Cesar Mendiola, M.D., Ph.D., Corneel Coens, M.Sc., Leen Verleye, M.D., Gavin C.E. Stuart, M.D., Sergio Pecorelli, M.D., Ph.D., and Nick S. Reed, M.D., for the European Organization for Research and Treatment of Cancer–Gynaecological Cancer Group and the NCIC Clinical Trials Group* — a Gynecologic Cancer Intergroup Collaboration

670 patients 59 institutions (median 5 patients)

N ENGLJ MED 363;10 NEJM.ORG SEPTEMBER 2, 2010

ORIGINAL ARTICLE

Neoadjuvant Chemotherapy or Primary Surgery in Stage IIIC or IV Ovarian Cancer

Ignace Vergote, M.D., Ph.D., Claes G. Tropé, M.D., Ph.D., Frédéric Amant, M.D., Ph.D., Gunnar B. Kristensen, M.D., Ph.D., Tom Ehlen, M.D., Nick Johnson, M.D., René H.M. Verheijen, M.D., Ph.D., Maria E.L. van der Burg, M.D., Ph.D., Angel J. Lacave, M.D., Pierluigi Benedetti Panici, M.D., Ph.D., Gemma G. Kenter, M.D., Ph.D., Antonio Casado, M.D., Cesar Mendiola, M.D., Ph.D., Corneel Coens, M.Sc., Leen Verleye, M.D., Gavin C.E. Stuart, M.D., Sergio Pecorelli, M.D., Ph.D., and Nick S. Reed, M.D., for the European Organization for Research and Treatment of Cancer–Gynaecological Cancer Group and the NCIC Clinical Trials Group* — a Gynecologic Cancer Intergroup Collaboration

RESULTS

Primary surgery group

- optimal residual disease in 41.6% (Estimated 50%)
- complete cytoreduction in 18.4%
- hysterectomy in 58.1% (previous in 9.7%)
- BSO/USO in 79.6%
- no gross RD in pelvis in 35.8%
- bowel resection in 15.5%
- median operative time 165 min (312 min for NGR)

Primary Cytoreductive Surgery

Radical Procedures

<u>Pelvis</u>

Radical oophorectomy Rectosigmoid colectomy Pelvic node debulking Resection of bladder/ureter Resection of iliac vessels

Abdomen

Total omentectomy Partial gastrectomy Splenectomy **Distal pancreatectomy Diaphragm peritonectomy Diaphragm resection** Liver resection Para-aortic node debulking Nephrectomy

The impact of bulky upper abdominal disease cephalad to the greater omentum on surgical outcome for stage IIIC epithelial ovarian, fallopian tube, and primary peritoneal cancer

Oliver Zivanovic^a, Eric L. Eisenhauer^a, Qin Zhou^b, Alexia Iasonos^b, Paul Sabbatini^c, Yukio Sonoda^a, Nadeem R. Abu-Rustum^a, Richard R. Barakat^a, Dennis S. Chi^{a,*}

474 stage IIIC patients between 1989-2005 stratified by UAD

Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the great Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the greater omentum. (B) Mid-abdomen. (C) Pelvis.

Fig. 1. Abdominopelvic regions. (A) Upper abdomen cephalad to the greater omentum. (B) Mid-abdomen. (C) Pelvis.

No UAD 116 (24%) Minimal UAD (<1cm) 161 (34%)

Bulky UAD 197 (42%)

Gynecologic Oncology 108 (2008) 287-292

Survival Effect of Maximal Cytoreductive Surgery for Advanced Ovarian Carcinoma During the Platinum Era: A Meta-Analysis

By Robert E. Bristow, Rafael S. Tomacruz, Deborah K. Armstrong, Edward L. Trimble, and F.J. Montz

- 81 cohorts of patients with stage III/IV EOC (6,885 pts)
- Statistically significant correlation between percent maximal CRS and log median survival time
- Correlation remained significant after controlling for all other variables (P <.001)
- Each 10% increase in maximal CRS
 -> 5.5% increase in median survival
 time.

Fig 2. Simple linear regression analysis: de-logged median survival time plotted against percent maximal cytoreductive surgery. Gray area, maximal cytoreductive surgery ≤ 25% and > 75%; crosshatched area, corresponding range of median survival times.

Review

"Optimal" cytoreduction for advanced epithelial ovarian cancer: A commentary

Scott M. Eisenkop a,*, Nick M. Spirtos b, Wei-Chien Michael Lin a

^a Women's Cancer Center, Southern California, 4835 Van Nuys Blvd., Suite 109, Sherman Oaks, CA 91403, USA
^b Women's Cancer Center, University of Nevada School of Medicine, 3131 La Canada Ave., Suite 110, Las Vegas, NV 89101, USA

Received 8 May 2006 Available online 31 July 2006

Conclusions:

•Complete primary cytoreduction improves the prognosis for survival significantly more than a small dimension of residual disease

•Available data justify elimination of macroscopic disease to be the most appropriate objective of primary cytoreductive surgery

•The term "optimal" should be applied to patients undergoing complete cytoreduction.

CRS-PP

Evolution of Surgical Treatment Paradigms for Advanced-Stage EOC

What is 'optimal' residual disease, really?

<u>Optimal</u>: complete cytoreduction to a visibly disease-free state (microscopic residual)

<u>Sub-optimal</u>: residual disease measuring ≤1cm in maximal diameter

<u>Non-optimal</u>: residual disease measuring >1cm in maximal diameter

Contents lists available at ScienceDirect

Gynecologic Oncology

journal homepage: www.elsevier.com/locate/ygyno

Improved progression-free and overall survival in advanced ovarian cancer as a result of a change in surgical paradigm $\stackrel{\simeq}{\asymp}$

Dennis S. Chi^{a,*}, Eric L. Eisenhauer^a, Oliver Zivanovic^a, Yukio Sonoda^a, Nadeem R. Abu-Rustum^a, Douglas A. Levine^a, Matthew W. Guile^b, Robert E. Bristow^b, Carol Aghajanian^c, Richard R. Barakat^a

Recurrent EOC Treatment

Cytoreductive surgery plus chemotherapy versus chemotherapy alone for recurrent epithelial ovarian cancer (Review)

Galaal K, Naik R, Bristow RE, Patel A, Bryant A, Dickinson HO

•Medline: 1004 •Embase :1089 •Central: 123 •Specialised Register: 77

Results of the search

•We did not identify any studies that compared the effectiveness and safety of secondary surgical cytoreduction and chemotherapy for women with recurrent epithelial ovarian cancer.

•Therefore *the questions* of whether secondary cytoreductive surgery and chemotherapy is associated with a survival benefit when compared to chemotherapy alone in terms of overall and progression-free survival *cannot be answered by this review.*

Secondary Cytoreductive Surgery

Most of the evidence for surgical treatment in rEOC are based on platinum sensitive disease;

Secondary CRS is usually not offered for: > progression disease during the first line platinumchemotherapy (platinum refractory)
> recurrent disease within less than six months of primary treatment (platinum resistant).

These patients usually have poor prognosis and do not benefit from further surgical attempts at cytoreduction Review

Cytoreductive surgery for recurrent ovarian cancer: A meta-analysis

Robert E. Bristow ^{a,*}, Isha Puri ^a, Dennis S. Chi ^b

 The Kelly Gynecologic Oncology Service, Departments of Gynecology and Obstetrics and Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Phipps #281, Baltimore, Maryland 21287, USA
 ^b Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

Parameters	Mean Weighted	Range
	Proportion	
Optimal Surgical Resection	70.3%	22.2% to 100%.
Complete Cytoreduction	52.2%	9.4% to 100%
Median Estimated Blood Los	587 cm3	300 -1000 cm3
Median Operative Time	233 min.	130-588 min.
Bowel Resection	45%	0-80%
Peri-Operative Morbidity	19,2%	0-88%
Peri-Operative Mortality	1,3%	0-5,5%
Median Survival Time	30,3 months	10-62 months

IP or postoperative sCT: 1221 pts;HIPEC: 62 pts

Recurrent EOC: Scenarios

Single Site Ascite: NO

Multiple Site Ascite: Rare

Confluent or Diffuse PC

Ascite: Frequent

Dennis S. Chi, M.D.¹ Kristina McCaughty, M.D.¹ John P. Diaz, M.D.² Jae Huh, M.D.¹ Sarah Schwabenbauer, M.D.¹ Amanda J. Hummer, M.S.³ Ennapadam S. Venkatraman, Ph.D.³ Carol Aghajanian, M.D.⁴ Yukio Sonoda, M.D.¹ Nadeem R. Abu-Rustum, M.D.¹ Richard R. Barakat, M.D.¹

¹ Gynecology Service, Department of Surgery; Memorial Sloan-Kettering Cancer Center, New York, New York.

² Department of Obstetrics and Gynecology; University of Miami, Jackson Memorial Hospital, Miami, Florida.

153 Pts

Guidelines and Selection Criteria for Secondary Cytoreductive Surgery in Patients with Recurrent Platinum-Sensitive Epithelial Ovarian Carcinoma

Recommendation for Secondary Cytoreduction Based on Disease-free Interval, the Number of Recurrence Sites, and Evidence of Carcinomatosis

DFI	Single Site	Multiple Sites: No Carcinomatosis	Carcinomatosis
6–12 Mo	Offer SC	Consider SC	No SC
12–30 Mo	Offer SC	Offer SC	Consider SC
>30 Mo	Offer SC	Offer SC	Offer SC

DFI: disease-free interval; Mo: months; SC: secondary cytoreduction.

Univariate Analysis

	Total	%	Median Survival (95% CI),		
Variable	No.	Alive	Мо	HR (95% CI)	Р
Ascites					
No	91	37	48.9 (41.8-56.2)	1.00	<.001
Yes	29	14	28.0 (23.7-33.7)	2.25 (1.42-3.57)	
No. of sites					
One	41	44	60.3 (46.5–102.2)	1.00	<.001
Multiple, no carcinomatosis	68	32	41.7 (33.7-51.4)	1.85 (1.10-3.11)	
Carcinomatosis	44	18	27.5 (20.8-36.0)	3.81 (2.17-6.69)	
Residual after second debulking					
≤0.5 cm	79	44	56.2 (48.2-66.6)	1.00	<.001
>0.5 cm	73	16	26.7 (21.9-31.0)	3.12 (2.08-4.67)	

CANCER May 1, 2006 / Volume 106 / Number 9

The Role of HIPEC after CRS

Primay EOC

Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: Multi-institutional phase-II trial

Marcello Deraco ^{a,*}, Shigeki Kusamura ^a, Salvatore Virzì ^b, Francesco Puccio ^c, Antonio Macrì ^d, Ciro Famulari ^d, Massimiliano Solazzo ^c, Serena Bonomi ^b, Domenico Rosario Iusco ^b, Dario Baratti ^a

^a Peritoneal Surface Malignancy Program, Department of Surgery, National Cancer Institute, via Venezian 1, 20133 Milan, Italy

^b General Surgery Unit, Bentivoglio Hospital, AUSL Bologna, Via Marconi 35, 40010 Bentivoglio (BO), Italy

^c General Surgery Unit, Manerbio Hospital, Azienda Ospedaliera di Desenzano, Via Marconi, 7, 25025 Manerbio (BS), Italy

^d General Surgery Unit, G. Martino Hospital, University of Messina, Via Consolare Valeria, 98125 Messina, Italy

STUDY STRUCTURE

- Phase II Study
- 4 Italian centers: Milan NCI, Messina University, Bentivoglio and Manerbio Hospital
- 26 Patients with advanced epithelial ovarian cancer
- Study period: November 2004 to July 2010

PATIENTS' CHARACTERISTIC

Histological subtype Serous AdenoCA		26
Grade	1/2	4
	3	22
Stage	III	25
	IV	1 (proximal vagina)
CA125	>35	24

Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy as upfront therapy for advanced epithelial ovarian cancer: Multi-institutional phase-II trial

Marcello Deraco ^{a,*}, Shigeki Kusamura ^a, Salvatore Virzì ^b, Francesco Puccio ^c, Antonio Macrì ^d, Ciro Famulari ^d, Massimiliano Solazzo ^c, Serena Bonomi ^b, Domenico Rosario Iusco ^b, Dario Baratti ^a

^a Peritoneal Surface Malignancy Program, Department of Surgery, National Cancer Institute, via Venezian 1, 20133 Milan, Italy

^b General Surgery Unit, Bentivoglio Hospital, AUSL Bologna, Via Marconi 35, 40010 Bentivoglio (BO), Italy

^c General Surgery Unit, Manerbio Hospital, Azienda Ospedaliera di Desenzano, Via Marconi, 7, 25025 Manerbio (BS), Italy

^d General Surgery Unit, G. Martino Hospital, University of Messina, Via Consolare Valeria, 98125 Messina, Italy

Patients: 26; Stage III–IV EOC

Cytoreductive surgical and HIPEC procedure.

Parita pactornias	N
rentonectonnes	IN
Greater omentectomy	24
Right upper quadrant peritonectomy	16
Left upper quadrant peritonectomy	16
Pelvic peritonectomy	26
Lesser omentectomy	18
Visceral resections	
Splenectomy	10
Liver capsulectomy	3
Cholecystectomy	14
Partial gastrectomy	1
Sigmoidectomy	15
Right colectomy	9
Total colectomy	3
Small bowel resection	3
Total hysterectomy ^a	18
Bilateral salpingo-oophorectomy ^b	19
Appendectomy	3
Para aortic and pelvic lymphadenectomy	4
Proximal vagina resection	1
Other	2
Ileos tomy ^c	11
HIPEC	
Cisplatin total dose, median (range)	150 mg (80-250)
Doxorubicin total dose, median (range)	70 mg (40-80)

HIPEC: hyperthermic intraperitoneal chemotherapy; SD: standard deviation.

^a Eight patients underwent TAH previously (two of them for non-neoplastic cause).

^b Seven patients underwent BSO previously.

^c No colostomy was done.

Gynecologic Oncology 122 (2011) 215-220

The Role of HIPEC after CRS

Recurrent EOC

Secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for recurrent epithelial ovarian cancer: a multi-institutional study

M Deraco,^a S Virzì,^b DR Iusco,^b F Puccio,^c A Macrì,^d C Famulari,^d M Solazzo,^c S Bonomi,^b A Grassi,^b D Baratti,^a S Kusamura,^a

STUDY DESIGN

Retrospective study

Data extracted from a multi-institutional prospective database

Four Italian centres:

- National Cancer Institute (NCI) of Milan
- General Surgery Unit of Messina's University
- Bentivoglio's hospital
- Manerbio's hospital

PATIENT'S CHARACTERISTICS

- April 1995 to May 2010
- Fifty-six patients
- Mean age: 55.2 years (30-75)
- Mean preoperative serum albumin: 4.0 g/dl (2.2-5.4)
- Performance Status: 33 = PS-0, 19 = PS-1, 5= PS-2.
- Previous surgical score (PSS):23= PPS-0, 13=PPS-1, 19=PPS-2, 2=PPS-3.
- Ca 125 (U/ml) >35: 46%

PATIENT'S CHARACTERISTICS

Distribution of patients according to tumor grading

BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG

RESULTS

- Median PCI: 15.2 (range: 4–30)
- Median operative time: 563 minutes (240-840)
- Median length of stay: 27.6 days (7–108)

Distribution of patients' according to completeness of cytoreduction

BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG

Secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for recurrent epithelial ovarian cancer: a multi-institutional study

M Deraco,^a S Virzì,^b DR Iusco,^b F Puccio,^c A Macrì,^d C Famulari,^d M Solazzo,^c S Bonomi,^b A Grassi,^b D Baratti,^a S Kusamura,^a

┹

OUTCOMES

Figure 1A: OS in recurrent EOC treated by CRS and HIPEC

Figure 1B: PFS in recurrent EOC treated by CR+HIPEC

Secondary cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for recurrent epithelial ovarian cancer: a multi-institutional study

M Deraco,^a S Virzì,^b DR Iusco,^b F Puccio,^c A Macrì,^d C Famulari,^d M Solazzo,^c S Bonomi,^b A Grassi,^b D Baratti,^a S Kusamura,^a

Figure 2: Overall survival according to completeness of cytoreduction

BJOG An International Journal of Obstetrics and Gynaecology © 2012 RCOG

ANALYSIS

Variables correlated with OS by univariate analysis:

- •ECOG performance status;
- Preoperative serum albumin level;
- Histological grading;
- •Previous surgical score;
- •Completeness of cytoreduction.

Variables correlated with OS at the multivariate analysis

- •ECOG performance status (HR: 5.89, 95%CI: 2.08-16.71, p-value: 0.001);
- •Preoperative serum albumin (HR: 3.89, 95%CI: 1.42-10.69, p-value: 0.008);
- •Completeness of cytoreduction (HR: 4.40, 95%CI: 1.55-12.51, p-value: 0.005).

EOC: CONCLUSION

•Confirmation of the role of CRS (CC-0) on outcomes effort to spread this concept

•Promising results for CRS and HIPEC on Primary and Recurrent EOC

•Randomised Study are necessary to asses the real benefit of HIPEC

Gastric Cancer

5th most common form of cancer (171,000 cases)
 in Europe (2004)

• 3th most common cause of death due to cancer (137,000 deaths)

Peritoneal Carcinomatosis from Gastric Cancer: A Multi-Institutional Study of 159 Patients Treated by Cytoreductive Surgery Combined with Perioperative Intraperitoneal Chemotherapy

Olivier Glehen, MD, PhD¹, François Noel Gilly, MD, PhD¹, Catherine Arvieux, MD, PhD², Eddy Cotte, MD¹, Florent Boutitie³, Baudouin Mansvelt, MD, PhD⁴, Jean Marc Bereder, MD⁵, Gérard Lorimier, MD⁶, François Quenet, MD⁷, Dominique Elias, MD, PhD⁸ and Association Française de Chirurgie

Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy Improves Survival of Patients with Peritoneal Carcinomatosis from Gastric Cancer: Final Results of a Phase III Randomized Clinical Trial

Xiao-Jun Yang, MD¹, Chao-Qun Huang, MD¹, Tao Suo, MD², Lie-Jun Mei, MD¹, Guo-Liang Yang, MD¹, Fu-Lin Cheng, MD¹, Yun-Feng Zhou, MD, PhD¹, Bin Xiong, MD, PhD¹, Yutaka Yonemura, MD, PhD³, and Yan Li, MD, PhD¹

Covariate	χ^2	P value	Hazard ratio	95% CI
Sex (M vs. F)	0.099	0.753	1.101	0.605-2.002
Age (<60 years vs. ≥60 years)	0.638	0.425	1.275	0.702-2.317
PCI (low PCI vs. high PCI)	0.292	0.589	1.222	0.590-2.529
Treatment (CRS + HIPEC vs. CRS alone)	9.871	0.002	2.617	1.436-4.769
PC state (synchronous vs. metachronous)	5.438	0.02	2.228	1.136-4.367
CC (0-1 vs. 2-3)	8.585	0.003	2.794	1.405-5.556
Chemotherapy (≥6 vs. <6 cycles)	15.649	0	3.344	1.838-6.061
SAE (no vs. yes)	13.765	0	4.295	1.989-9.274

PCI Peritoneal carcinomatosis index, CRS cytoreductive surgery, HIPEC hyperthermic intraperitoneal chemotherapy, PC peritoneal carcinomatosis, CC completeness of cytoreduction, SAE serious adverse events

Ann Surg Oncol (2011) 18:1575-1581

A Systematic Review and Meta-analysis of the Randomized Controlled Trials on Adjuvant Intraperitoneal Chemotherapy for Resectable Gastric Cancer

Tristan D. Yan, BSc (Med) MBBS,^{1,2} Deborah Black, BSc DipEd MStat PhD,³ Paul H. Sugarbaker, MD,² Jacqui Zhu, BSc (Med),⁴ Yutaka Yonemura, MD, PhD,⁵ George Petrou, BSc (Med) MBBS,¹ and David L. Morris, MD, PhD¹

Comparison: 01 Adjuvant intraperitoneal chemotherapy vs. control Outcome: 03 Overall survival

Study		Hazard ratio (random)	Weight	Hazard ratio (random)	
or sub-category	log[Hazard ratio] (SE)	95% CI	%	95% CI	Year
01 Hyperthermic intraope	arative i.p. chemo				
Hamazoe	-0.3700 (0.1336)		62.36	0.69 [0.53, 0.90]	1994
Fujimoto	-1.0000 (0.3590)	_	16.95	0.37 [0.18, 0.74]	1999
Yonemura	-0.5312 (0.3183)	— • -+	20.69	0.59 [0.32, 1.10]	2001
Subtotal (95% CI)		◆	100.00	0.60 [0.43, 0.83]	
Test for heterogeneity: C	hi² = 2.77, df = 2 (P = 0.25), l² = 27.7%	•			
Test for overall effect: Z :	= 3.12 (P = 0.002)				
02 Normothermic intraop	erative i.p. chemo				
Yonemura	-0.3994 (0.3166)	_ _	22.98	0.67 [0.36, 1.25]	2001
Takahashi	-0.9192 (0.2644)	_ 	30.44	0.40 [0.24, 0.67]	1995
Mivashiro	-0.2024 (0.3222)		22.34	0.82 [0.43, 1.54]	2005
Rosen	-0.0034 (0.3063)		24.24	1.00 [0.55, 1.82]	1998
Subtotal (95% CI)			100.00	0.67 [0.44, 1.01]	
Test for heterogeneity: C Test for overall effect: Z :	hi² = 5.87, df = 3 (P = 0.12), l² = 48.9% = 1.91 (P = 0.06)	-			
03 Early postoperative in	chemo				
Yu	-0.7244 (0.2796)		52.07	0.48 [0.28. 0.84]	2001
Wei	-0.1627 (0.2949)		47.93	0.95 [0.49, 1.51]	2005
Subtotal (95% CI)	-0.102/ (0.1545)		100.00	0.64 [0.37 1.10]	2005
Test for beterogeneity: C	$b^2 = 1.91 df = 1 (P = 0.17) l^2 = 47.7\%$		100.00	0104 [0101] 1110]	
Test for overall effect: Z :	= 1.61 (P = 0.11)				
04 Hyperthermic intraope	arative & early postoperative i.p. chemo				
Wei	-0.8176 (0.3209)	_	46.29	0.44 [0.24, 0.83]	2005
Gao	-0.7957 (0.2924)	_	53.71	0.45 [0.25, 0.80]	2002
Subtotal (95% CI)		•	100.00	0.45 [0.29, 0.68]	
Test for heterogeneity: C	hi² = 0.00, df = 1 (P = 0.96), l² = 0%				
Test for overall effect: Z =	= 3.73 (P = 0.0002)				
05 Delayed postoperative	e i.p. chemo				
Sautner	-0.1193 (0.2857)		100.00	0.89 [0.51, 1.55]	1994
Subtotal (95% CI)			100.00	0.89 [0.51, 1.55]	
Test for heterogeneity: ne	ot applicable				
Test for overall effect: Z :	= 0.42 (P = 0.68)				
	0.1	0.2 0.5 1 2 5	10		

Favours i.p. chemo Favours control

Annals of Surgical Oncology 14(10):2702–2713

8TH INTERNATIONAL WORLD CONGRESS ON PERITONEAL SURFACE MALIGNANCIES

Management of Peritoneal Sufface Malignancy: a Multidisciplinary challenge

BCTLIN, GERMANY OCTOBER 31st -NOVEMBER 2ND 2012

For further information, please visit www.peritonealconference2012.com

(site will be available from summer 2011)

Congress venue: www.Langenbeck-Virchow-Haus.de, Berlin

