Rationale for the treatment

of

Peritoneal Surface Malignancy

K. Van der Speeten

05/10/12

Washington Hospital Center Washington Cancer Institute

A full circle :acknowledgements

Rationale for the treatment

of

Peritoneal Surface Malignancy

K. Van der Speeten

05/10/12

Washington Hospital Center Washington Cancer Institute

"Nurse, get on the internet, go to SURGERY.COM, scroll down and click on the 'Are you totally lost?' icon."

A *hopeless* operation for a *hopeless* patient with a *hopeless* disease by a *hopeless* surgeon

- Natural history
- Pathofysiology
- Shift of the paradigm
- Pharmacologic rationale
- Pharmacologic variables
- Manipulating variables
- Tumor nodule as endpoint
- Rationale for bidirectional chemotherapy
- Individual drug sensitivity
- Conclusions

UNIVERSITET

'NATURAL'

HISTORY

PERITONEAL CARCINOMATOSIS : HOW ARE WE DOING ?

PERITONEAL CARCINOMATOSIS : HOW ARE WE DOING ?

Author	Year	No. patients	Median survival (months)	Tumor
Chu et al	1989	100	2.2-8.5	Non gynecologic
Sadegi et al	2000	370	3.1	Non gynecologic
Jayne et al	2003	349	7.0	Colon Rectum
Verwaal et al	2003	51	12.6	Colon
Elias et al	2009	48	23.9	Colon Rectum
Piccart	2000	680	36.5	Ovary

PATHOFYSIOLOGY

PERITONEAL CARCINOMATOSIS : WHY IS PSM DIFFERENT ?

THEORETICAL PATTERNS OF TUMOR SPREAD

- Direct tumor growth
- Lymfovascular spread
- •Exfoliation of tumor cells

Steps in the peritoneal metastatic cascade

- 1. Liberation of cells from tumor mass
- 2. Transport throughout the peritoneal cavity
- 3. Adhesion and invasion
- 4. Systemic spread

PERITONEAL CARCINOMATOSIS : PATHOPHYSIOLOGY

Figure 2: Mechanisms of transcoelomic metastasis in ovarian cancer

Step 1: Epithelial ovarian cancer cell (green) detaches after altered gene expression. Step 2: peritoneal or ascitic current (blue arrows) facilitates peritoneal, lymphatic, and haematogenous metastasis. Step 3: immune evasion by complement inhibition and secretion of FAS ligand. Step 4: spheroid formation. Step 5: ascitic components stimulate further metastastic progression. Step 6: peritoneal activation and implantation. B7-H4=Immune costimulatory protein B7-H4; CXCL12=ligand of chemokine (CXC motif) receptor 4 (CXCR4); FHL1= factor H-like protein 1; LPA=lysophosphatidic acid; MMP=matrix metallopeptidase; VEGF=vascular endothelial growth factor.

PERITONEAL CARCINOMATOSIS : ' MILKY SPOTS '

EM magnification of the milky spot. It is 5-10 µm in diameter and connects with submesothelial lymphatic channels (courtesy : Yonemura Y; Peritoneal Dissemination, Maeda Shoten, Kanazawa, Japan, 1998)

PERITONEAL CARCINOMATOSIS : ' MILKY SPOTS '

PERITONEAL CARCINOMATOSIS : LYMPHATIC LACUNAE

Lacunae in diaphragmatic mesothelial lining Grimaldi et al. *Am J Physiol Heart Circ Physiol* 2006

PERITONEAL CARCINOMATOSIS : LYMPHATIC LACUNAE

SHIFT

OF THE

PARADIGM

Rationale for an aggressive combined surgical – medical approach

Paul Sugarbaker

Frans Zoetmulder

Yutaka Yonemura

Peritoneal carcinomatosis = distant metastasis

<u>Shift of the paradigm</u>

Peritoneal carcinomatosis = regional spread

' a locoregional treatment for a locoregional disease makes sense '

Sugarbaker PH:Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. *Dis Colon Rectum* 1994;37 (suppl):S115-22.

EPIC

BIC

Loco-regional chemotherapy

CYTOREDUCTIVE SURGERY + INTRACAVITARY CHEMOTHERAPY

Early Postoperative Intraperitoneal Chemotherapy

Bidirectional Intraoperative Chemotherapy

- Combined multi-organ resections
- Peritonectomy-procedures

• Hyperthermic Intraperitoneal

Peroperative Chemotherapy (HIPEC)

PHARMACOLOGIC

RATIONALE

Pharmacokinetic rationale

"the peritoneal permeability of a number of hydrophylic anticancer drugs

after intraperitoneal administration may be considerably less than the

plasma clearance of that same drug"

- pharmacokinetic principle of **DOSE INTENSIFICATION**
- function of molecular weight
- two compartment model

DOSE INTENSIFICATION

Rate of mass transfer = PA ($C_P - C_B$)

DOSE - INTENSIFICATION

Efficacy versus hematological toxicity

Doxorubicin levels in tumor nodules versus normal adjacent tissues

Question : do plasmatic levels predict toxicity ?

Unpublished data

Question : is 'P ' influenced by our surgery ?

Fig. 1. Peritoneal barrier modeled as blood and lymph capillaries distributed within a tissue space made up of parenchymal cells, interstitial cells, and matrix molecules. The peritoneum, made up of a single layer of mesothelial cells and underlying connective tissue, separates the fluid in the cavity from the underlying tissue space but does not provide a significant barrier to transport. The major resistances to transport are the capillary endothelium and the cell-matrix system surrounding the exchange vessels.

Question : is P influenced by our surgery ?

Peritoneal Barrier Function

Figure 4 - H&E stain of frozen sections of rat demonstrating the presence (A) or absence (B) of peritoneum.

Flessner et al PDI 2003

Figure 5 — Osmotic filtration into the transport chamber and loss of mannitol: effect of the presence of peritoneum. The results of one-way ANOVA demonstrate no significance of the presence of the peritoneum for osmotic volume flux (μ L/minute/cm², n = 9, p > 0.9, solid bars) or mass transfer coefficient for mannitol (MTC; cm/minute, n = 9, p > 0.4, open bars).

Question : is P influenced by our surgery ?

Cancer Chemother Pharmacol (2003) 52: 108–112 DOI 10.1007/s00280-003-0626-8 Vinicius de Lima Vazquez · O. Anthony Stuart Faheez Mohamed · Paul H. Sugarbaker Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics

Fig. 2 Peritoneal and plasma concentration curves of heated intraoperative mitomycin C. The means \pm SD of five patients in each group are shown

PHARMACOLOGIC VARIABLES

PHARMACOLOGIC VARIABLES

Pharmacokinetic VR

- DOSE
- VOLUME
- DURATION
- CARRIER SOLUTION
- PRESSURE
- MOLECULAR WEIGHT

Pharmacodynamic VR

- TUMOR NODULE SIZE
- DENSITY
- VASCULARITY
- INTERSTITIAL FLUID PRESSURE
- BINDING
- TEMPERATURE

' what the drug does to the body '

' what the body does to the drug '

PHARMACOLOGIC VARIABLES

Determinants of efficacy of IP chemotherapy

Question : do peritoneal drug levels accurately predict efficacy ?

Ceelen W. et al. Cancer Treat Res. 2007; 134: 195-214.

NO

Manipulating

Pharmacologic Variables

PK- VARIABLE : PRESSURE

High Intra-abdominal Pressure Enhances the Penetration and Antitumor Effect of Intraperitoneal Cisplatin on Experimental Peritoneal Carcinomatosis

Philippe Esquis, MD,*† David Consolo, MD,‡ Guy Magnin, MD,‡ Philippe Pointaire, MD,‡ Philippe Moretto, MD,§ Maria Dolores Trusa, MD,§ Jean-Luc Beltramo, PhD,]] Carole Drogoul,¶ Michel Simonet,** Laurent Benoit, MD,*† Patrick Rat, MD,† and Bruno Chauffert, MD*††

FIGURE 3. Distribution of platinum into peritoneal tumor nodules after conventional IP or IAP cisplatin treatment. Rats with 21-day-old carcinomatosis (4 per group) were treated with cisplatin through a conventional intraperitoneal injection (IP) or an intraperitoneal infusion with increased intraabdominal pressure (22 mm Hg for 1 hour; IAP). Local platinum concentration was measured along the radii of peritoneal tumor nodules by the PIXE method. The platinum distribution in 400 \times 800 im² analyzed areas was plotted from the periphery to the tumor center. In conventionally treated IP groups, the cisplatin concentration in the peritoneal liquid was either 250 mg/L in 20 mL isotonic saline (5 mg/rat; 15 mg/kg; ●), or 1875 mg/L in 20 mL isotonic saline (37.5 mg/rat; 112.5 mg/kg; ▲) to compare groups exposed to the same concentration or the same total dose of cisplatin. Cisplatin concentration was 250 mg/L in 150 mL isotonic saline (37.5 mg/rat; 112.5 mg/kg) for the IAPtreated group (■). Each point is the mean of 4 determinations ± SD. A significant difference among the 3 IP treatments was detected (P = 0.0125, Kruskal-Wallis test). The Mann-Whitney test indicated that the difference between both of the upper curves was only significant between a depth of 1400 and 1800 im (P = 0.0421).

Pharmacokinetic variables **UPPSALA UNIVERSITET**

Laparoscopic HIPEC: initial experience; opportunities and limitations

Kurt GF Van der Speeten, M.D Departement of Digestive Surgery, Ziekenhuis Oost-Limburg, Genk - Belgium

Results

Discussion

References

Pharmacokinetic variables

Journal of Surgical Oncology 2009;100:331-334

Laparoscopic Hyperthermic Intraperitoneal Peroperative Chemotherapy (HIPEC) in the Management of Refractory Malignant Ascites: A Multi-Institutional Retrospective Analysis in 52 Patients

M. VALLE, мD,¹ K. VAN DER SPEETEN, мD,²* AND A. GAROFALO, мD, PhD¹ ¹Department of Surgical Oncology, Digestive Branch, "Regina Elena National Cancer Institute", Rome, Italy ²Department of Surgical Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium

Malignant ascites is a debilitating condition affecting cancer patients in their terminal stage of disease. Recently, laparoscopic hyperthermic intraperitoneal peroperative chemotherapy (HIPEC) was introduced as a new approach. From September 2001 to August 2008, 52 patients were treated with this new modality. No treatment-related mortality was observed. Median survival was 98 days. One patient developed a clinical recurrence. Laparoscopic HIPEC is a safe and effective method for palliating malignant ascites *J. Surg. Oncol. 2009;100:331–334.* © 2009 Wiley-Liss, Inc.

UPPSALA UNIVERSITET

Pharmacokinetic variables

Fig. 1. Inflow an outflow catheters in place and secured, through trocar port incisions after laparoscopic adhesiolysis.

Fig. 3. Kaplan-Meier survival function of 52 patients treated with laparoscopic HIPEC in the palliation of malignant ascites.

TUMOR NODULE

PHARMACOLOGIC

ENDPOINT

TUMOR NODULE AS PHARMACOLOGIC ENDPOINT

Doxorubicin levels in peritoneal fluid, plasma, tumor nodules and adjacent tissue

TUMOR NODULE AS PHARMACOLOGIC ENDPOINT

Fig. 3 Doxorubicin levels in appendiceal tumor tissue showing diffuse peritoneal adenomucinosis (*DPAM*) versus peritoneal mucinous carcinomatosis (*PMCA*). Peritoneal fluid concentrations are also shown. *TN* tumor nodule, *PF* peritoneal fluid

TUMOR NODULE AS PHARMACOLOGIC ENDPOINT

DOXORUBCIN

CISPLATIN

MELPHALAN

Rationale for

Bidirectional Intraoperative

Chemotherapy (BIC)

Introduction : concept of BIC

Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution

D. Elias*, M. Bonnay, J. M. Puizillou, S. Antoun, S. Demirdjian, A. El Otmany, J. P. Pignon, L. Drouard-Troalen, J. F. Ouellet & M. Ducreux

One hour before IPCH we delivered systemic intravenous leucovorin 20 mg/m² and 5-FU 400 mg/m² because 5-FU potentiates the action of oxaliplatin [11]. However, as 5-FU cannot be mixed with oxaliplatin in the peritoneal cavity due to pH incompatibility, it was delivered intravenously. Following this systemic perfusion, tumour and healthy tissue were soaked with 5-FU before the beginning of the IPCH. A low dose of 400 mg/m² was chosen to avoid intensifying the aggressiveness of combined complete cytoreductive surgery and IPCH.

Pharmacologic concept of bidirectional (IV and IP) chemotherapy

Modified from Fujiwara K. Int J Gynecol Cancer 2007,17,1-20

<u>FIGURE 2</u>: 5-Fluorouracil concentrations in peritoneal fluid and plasma after intravenous administration during hyperthermic intraperitoneal chemotherapy procedure (N=20).

Journal of Surgical Oncology 2010;102:730-735

FIGURE 3: 5-Fluorouracil concentrations in plasma, peritoneal fluid and tumor nodules after intravenous administration during hyperthermic intraperitoneal chemotherapy procedure (N=9).

Rationale for intravenous administration of 5-fluorouracil (augmentative drug)

- Rapid distribution to all body compartments (including peritoneal cavity)
- Metabolisation confined to plasma compartment
- Pharmacokinetic advantage

Timing of intravenous chemotherapy emerges as a new variable

- Pharmacological 'sink' phenomenon in the artificial ascites
- Ideal situation for drug synergism with intraperitoneal chemotherapy
- Normothermic administered IV 5-FU = subject to IP hyperthermic augmentation

INDIVIDUAL

DRUG SENSITIVITY

INDIVIDUAL DRUG SENSITIVITY

Heterogeneous activity of cytotoxic drugs in patient samples of peritoneal carcinomatosis

H. Mahteme ^a, A. von Heideman ^b, B. Grundmark ^c, B. Tholander ^d, L. Påhlman ^a, B. Glimelius ^{b,d}, R. Larsson ^c, W. Graf ^a, P. Nygren ^{b,*}

Conclusions: The activity in vitro of cytotoxic drugs commonly used in IPC for PC is very heterogeneous. Efforts for individualizing drug selection for PC patients undergoing IPC seem justified.

NON-METABOLIZERS

Normal patient

Non-metabolizer

Unmetabolized mitomycin C. In the top portion is a representative HPLC chromatogram of mitomycin C and its metabolites in peritoneal fluid, plasma and urine. This pattern of the chromatogram was observed in a great majority of patients. The lower graphs shows the HPLC chromatogram of a single patient who had failure to metabolize the drug. Six patients (4%) had this unusual mitomycin C chromatogram

FOR

A NEW CONCEPTUAL MODEL

CONCEPTUAL MODEL OF PERIOPERATIVE CHEMOTHERAPY

REVIEW ARTICLE

Pharmacokinetics and Pharmacodynamics of Perioperative Cancer Chemotherapy in Peritoneal Surface Malignancy

Kurt Van der Speeten, MD,* Oswald A. Stuart, BS,† and Paul H. Sugarbaker, MD†

CONCLUSIONS

PERITONEAL CARCINOMATOSIS : CONCLUSIONS

- PSM is a locoregional disease and as such warrants a locoregional approach.
- CRS addresses macroscopic disease and the subsequent intraperitoneal chemotherapy eliminates residual microscopic disease
- Dose intensification (IP/IV) is the driving force
- Tumor nodules emerges as the pharmacologic endpoint
- Timing of IV chemotherapy emerges as a new pharmacologic variable
- Individual drug sensitivity ?

THANK YOU

