Wound Closure after mastectomy for advanced breast cancer and implication for adjuvant treatment.

Nicolette Landman

□ Developments in management have increased the complexity of planning wound closure after mastectomy for advanced breast cancer

Advanced Breast carcinoma

- □ T3,4 or N2
 - Mastectomy, ANC, Chemo, RT =/- hormone
 - Consider neoadjuvant for larger tumor to assist with mastectomy

Neoadjuvant chemotherapy

- Myelosuppressive effect
 - WBC nadir 10-14 d post chemo
 - Recovery by D 21
- Delay wound healing
 - N if WBC > 3000/mm3
- □ Increase susceptibility to infection

Mastectomy with simple closure

Neoadjuvant chemotherapy

- □ K Azzawi et al: Neoadjuvant therapy's effect on outcomes of IBR (171 cases)
 - Median interval between cessation of chemo and surgery 37d (aim between 4 6 wks)
 - Major complications comparable
 - Minor complications: NA 10%, control 6%
 - Delay to RT comparable 10%
- □ Forouhi et al no increase in surgery complications (79 cases)
- □ Deutch et al:immediate TRAM flap safe after NA, but smoking + NA increased complications and delay to adjuvant chemotherapy

Advanced breast Ca

- □ Post mastectomy
 - Simple closure
 - Chest wall reconstruction
 - SSM + Immediate breast reconstruction

Complex mastectomy defect

- □ Evaluate:
 - Defect type
 - Pleural cavity status
 - Osseous support requirements
 - Soft tissue available
- □ Reconstructive options:
 - Latissimus dorsi flap +/- Gore-Tex mesh
 - Thoracoepigastric flap
 - Rectus abdominis flap with vertical / transverse skin island
 - Omental flap

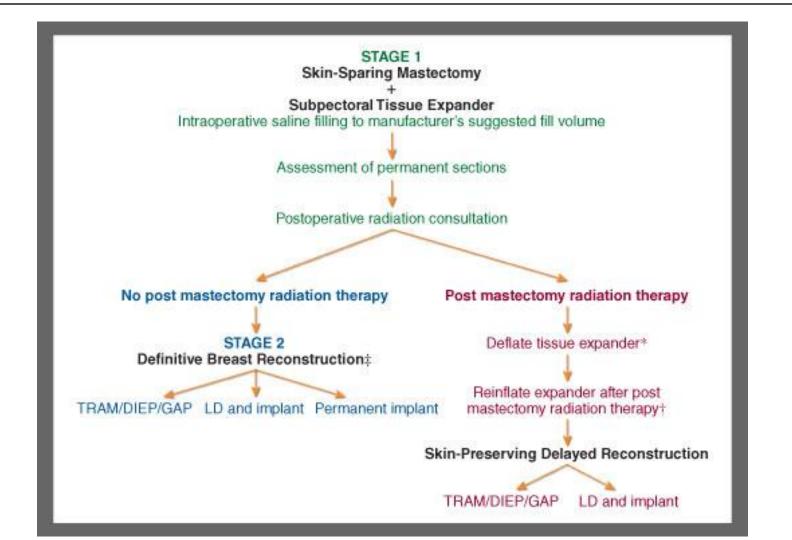


Figure 4 - The omentum flap on the thoracic wall.

Immediate Breast reconstruction

- □ Advantages
 - $ightharpoonup \downarrow cost$
 - Psychosocial benefits, body image, quality of life, Not given up hope
 - Normal breast landmarks preserved, technical ease → Improved cosmesis
- Disadvantages
 - Prolong operative time
 - Necrosis of mastectomy flaps
 - Higher complication rate
 - Large tumor size, direct skin involvement, ≥4 nodes + = Postop RT adversely affect recon
- □ Relative contraindications
 - Advanced disease Stage 3, 4
 - Post op RT needed
 - Medical comorbidities eg. Active smoking, obesity, cardiopulmonary disease

CONTROVERSIAL for Advanced Disease


IBR for Advanced Breast Ca

- □ Post op RT: Delayed reconstruction at our unit
- □ Dilemma: Need for RT only known after final pathology
- □ ?Delayed- immediate reconstruction
- □ IBR irrespective

Indications RT

- □ BCS
- Postmastectomy
 - T3-4 N0 M0
 - T1-2 N0 with pec fascia or muscle involvement, excision margins close or +
 - \geq 4 nodes +
 - 1-3 nodes +: treat if score ≥ 3
 - \Box ER = 1
 - \square LV + = 1
 - $\Box \quad Age \le 40 = 1$
 - \square Nodes 1-3 = 1

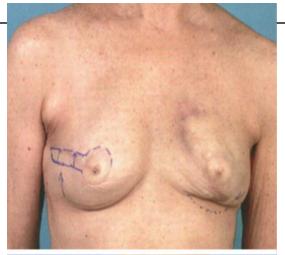
Kronowitz et al

Mastectomy skin flap necrosis

- \square Wide skin excision \rightarrow skin preserving mastectomy
 - †cosmesis
 - †risk compromised perfusion to skin
- \square Incidence: 1,5 15,8%
- □ Flap thickness
- □ Riskfactors:
 - ↑BMI
 - Tobacco 7.8% vs 1-2%
 - Prior breast RT
 - Pressure

- □ Evaluation:
 - Clinically: tissue quality, flap thickness, dermal edge bleeding
 - Fluorescein-dye
 - Indocyanine dye
 - Diffusion imaging spectroscopy/near-infrared spectroscopy
- □ ? Perfusion
 - Debride skin
 - Flap banking 100% survival Kovach et al

- □ Crisera et al. 170 Advanced breast Ca pts immediate free TRAM reconstruction
- Comparable complication rates to mastectomy alone.
- Delay to chemotherapy (4.7% pts) similar / less than mastectomy alone
- □ No delay in diagnosis of recurrence.
- □ Cosmetic outcome post RT: minimal distortion/shrinkage.



- □ Godfrey et al. immediate autologous tissue reconstruction (21)
 - No major flap complications
 - No delay in adjuvant therapy
 - 3 recurrences
 - 5 pts metastatic disease
- □ Styblo et al. immediate TRAM recon (21)
 - No delay in adjuvant therapy
 - No increased risk of local recurrence

- □ Sultan et al.(22)TRAM
 - No flap loss
 - 14% Early perioperative morbidity
 - No delay in chemotherapy
 - 1 local recurence, 2 metastatic at 28 months
- □ Zimmerman et al. (21 pts) IBR free TRAM
 - Good cosmesis post RT 90% pts
 - 29% local / metastatic disease

- □ Newman et al. IBR for advanced Ca. Early complications comparable.
- □ 47% of implant recons required implant removal.
- □ IBR 35 d to chemo vs. 21 d mastectomy alone
- □ ? Oncologically insignificant similar rates of local or distant metastasis.

Study	Patient number	Patient number	Reconstruction type	Time from surgery to CT	Chemotherapy delays	Morbidity during chemotherapy	
	IBR+CT	Mastectomy+CT		Mean/median (days)		Chemodierapy	
Bailey et al. ⁴⁷	28	None	Tissue expanders or implant Expansion avoided during CT	NS	No delays	NS	
Johnson et al.4	34	None	Silicon prosthesis	NS	No delays in initiation	NS	
Hoffman et al. ⁴⁸	17	None	Implant or tissue expander	42	1/17 (6%) delayed initiation	NS	
			Expansion avoided during nadir		2/17 (12%) interruptions of 21 and 35 days		
Schusterman et al. ³⁹	28	None	TRAM	NS	7/28 (25%) delayed for wound complications	NS	
Elliot et al.49	36	None	TRAM	NS	1/36 (3%) delayed initiation	NS	
Furey et al. ⁵⁰	36	None	Tissue expander or silicon implant	36	No delay in initiation	10/36 (28%)	
					2/36 (6%) required surgery during CT	wound complications	
Yule et al. ³⁸	23	None	Tissue expander and subsequent implant Expansion avoided during CT	14-28	Month long delays in 2/23 patients	No increase in surgical complications in chemotherapy group	
Yeh et al. ⁵¹	15	None	TRAM, LD flap, implant or tissue expander	35	1/15 (7%) delayed	NS	

Newman et al. ⁵²	50	72	TRAM, LD flap, implant Locally advanced cancers 25% preoperative	IBR/CT-35 Control-21	NS	No significant difference wound
			chemotherapy			complications
Contant et al. ³⁶	27	None	Silicon prosthesis	NS	NS	One low grade infection
Caffo et al. ⁴⁰	52	63	Skin expander	IBR/CT-44	No delays	No significant
			Expansion continued during chemotherapy	Control-45		difference in CT toxicity
Allweis et al. ⁴¹	49	308	TRAM, LD flap, implant or LD and implant	IBR/CT-41 Control-53	No delay in initiation	NS
Taylor and Kumar ⁴²	44	49	TRAM, LD flap, implant	IBR/CT-38	No delay in initiation	NS
				Control-38	Delays during chemotherapy comparable with controls	
Phipp et al. 53	50	None	TRAM, LD flap, DIEP* tissue expander, implant	NS	9/50 (1%) delay in adjuvant chemotherapy or radiotherapy	NS
Aft et al.43	98	113	NS	IBR/CT-40.6	NS	NS

^{*}Deep inferior epigastric perforator flap. CT=chemotherapy

Table 1 Local and distant recurrence after mastectomy and immediate breast reconstruction. Study Patient number Follow-up Local recurrence Distant recurrence Mean/median (months) Noone et al.3 185 4/185 (2%) 26 10/185 (5%) Johnson et al.4 28 118 7/118 (6%) 11/118 (9%) Kuske et al.⁵ 66 48 5/66 (7%) 26/66 (39%) Noone et al.6 306 77 16/306 (5%) 33/306 (11%) Slavin et al.⁷ 161 65 17/116 (15%) NS (not specified) Carlson et al.8* 187 37.5 9/187 (4.8%) NS Kroll et al.9* 104 7/104 (7%) 13/104 v 67 Sandelin et al. 10 100 36 8/100 (8%) 9/100 (9%) died from disseminated disease Petit et al.11 146 156 13/146 (9%) 22/146 (15%) Hidalgo et al. 12* 28 27 0/28 2/28 (7%) Ringberg et al. 13 79 43 4/79 (5%) 4/79 (5%) Kroll et al. 14* 154 72 or more 11/154 (7%) 16/154 (10%) Toth et al. 15* 50 57 0/50 5/50 (10%) Rivadeneira et al. 16 198 49 9/198 (5%) NS Vandeweyer et al. 17 49 72 2/49 (4%) 7/49 (14%) Foster et al. 18 25 49.2 1/25 (4%) 4/25 (16%) Medina-Franco et 173 73 7/173 (4%) 31/173 (18%) al. 19* Foster et al. 20* 25 49.2 1/25 (4%) 4/25 (16%) Brown et al.21* 151 48 3/151 (2%) 9/151 (6%)

^{*}Majority of patients had skin-sparing mastectomy.

Reconstruction effect on RT

- □ Sloping contour imprecise geometric match of medial and lateral irradiation fields
- □ Underdosing of chest wall, centrally under breast mound & internal mammary nodes
- □ Increased irradiation to normal tissues

RT effect on reconstruction

- □ Implants
 - ↑ capsular contractures
 - Spear et al 47,5% irradiated breasts with saline implants needed conversion to flap reconstruction
- Autologous reconstruction
 - Early complications not significantly more likely
 - ↑ late complications in immediate recon (fat necrosis, volume loss, flap contracture)
- □ Delayed recon post RT
 - Autogenous tissue preferred

Study	Patient number	Follow-up Mean/median (months)	Cosmesis) (% good/ excellent	Capsular contraction (%
Chu et al. ⁵⁶	5	30	3/5 (60%)	2/5 (40%)
Von Smitten and Sundell ⁵⁷	15	30	1/15 (7%)	NS
Rosato and dowden ⁵⁸	15	34	NS	11/15 (73%)
Evans et al. 59	9	38	NS	3/9 (33%)
Ramon et al. ⁶⁰	11	34	Radiotherapy associated with lower surgeon cosmesis score	6/11 (55%) Baker III or IV
Spear and Majidian ⁶¹	18	19	NS	4/18 (2.2%)
Victor et al.62	13	32	7/13 (54%)	4/13 (31%)
Ringberg et al. 13	9	43	NS	6/9 (67%)
Contant et al.36	13	30	NS	5/13 (38%)
Spear and Onyevu ⁶³	24	28	Mean cosmesis score 2.99 Scale 1–4	13/40 (33%)*
Krueger et al. ⁶⁴	9	31	50% patient satisfaction*	5/19 (26%)*
Tallet et al. 65	47	25	54%*	8/47 (17%)

^{*}Result combined with patients receiving preoperative radiotherapy.

Study	Patient number	Reconstruction type	Follow-up Mean/median (months)	Cosmesis (% good/excellent)	Flap tissue loss/necrosis (%)
Hartrampf and Bennett ⁷⁴	52	TRAM	Approx 36	NS	6/52 (12%) flap tissue loss
Salmon et al. ⁷⁵	40	Lat dorsi	NS	NS	2/40 (5%) minor skin necrosis
Jacobsen et al. ⁷⁶	47	TRAM (18% also had implant)	29	NS	4/47 (8%) fat necrosis 3/47 (6%) flap tissue loss
Kroll et al. ⁷⁷	82	Lat dorsi or TRAM	24	64(%)	28/82 (34%) flap tissue loss
Kroll et al. ⁷⁸	65	TRAM	NS	Mean cosmesis score 2.70 Scale 1-4	NS
Williams et al. ⁷⁹	108	TRAM	28	NS	19/108 (17.6%) fat necrosis 3/108 (2.8%) full thickness skin loss
Tran et al. ³⁴	70	TRAM	60	NS	5/70 (7%) partial flap loss 6/70 (9%) fat necrosis

Study	Patient number	Reconstruction type	Follow-up Mean/median (months)	Cosmesis (% good excellent)	Capsular contraction (%)
Dickson and Sharpe ⁷¹	10	implant	NS	NS	3/10 (33%)
Olenius and Jurell ⁷²	11	implant	32	5/11 (45%) acceptable cosmesis	NS
Evans et al. ⁵⁹	7	implant	42	NS	11/30 (37%)
	19	implant+lat dorsi			
	4	implant+TRAM			
Kraemer et al. ⁷³	35	implant	46	11/35 (31%)	15/35 (43%)
Contant et al.36	15	implant	30	NS	9/15 (60%)
Spear and Onyewu ⁶³	16	implant	28	Mean cosmesis score 2.9 (Scale 1-4)	13/40 (33%)*
Krueger et al. ⁶⁴	10	implant	31	50% patient satisfaction*	5/19 (26%)*

Conclusion

- Conflicting reports on oncological safety and good cosmetic outcome for immediate breast reconstruction
- □ Timing of surgery
- □ Known post-op RT Delay reconstruction
- □ Patient selection
 - Non smokers
 - N BMI

Thank you

References

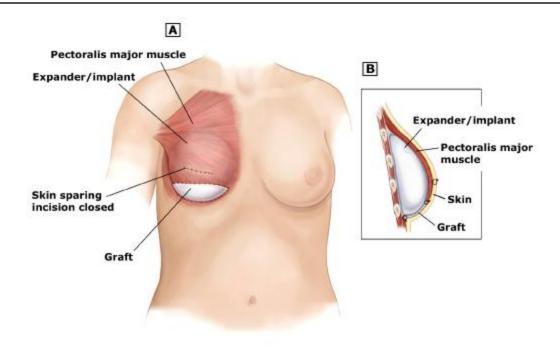
- 1. Allweis, T. M., Boisvert, M. E., Otero, S. E., Perry, D. J., Dubin, N. H., & Priebat, D. A. (2002). Immediate reconstruction after mastectomy for breast cancer does not prolong the time to starting adjuvant chemotherapy. *The American Journal of Surgery*, 183(3), 218-221. doi: http://dx.doi.org/10.1016/S0002-9610(02)00793-6
- 2. Azzawi, K., Ismail, A., Earl, H., Forouhi, P., & Malata, C. M. (2010). Influence of neoadjuvant chemotherapy on outcomes of immediate breast reconstruction. *Plastic and Reconstructive Surgery*, 126(1), 1-11 10.1097/PRS.0b013e3181da8699.
- 3. Beahm EK FAU Chang, David W., & Chang DW. Chest wall reconstruction and advanced disease.
- 4. Bui DT FAU Chunilal, Ashwin, Chunilal A FAU Mehrara, Babak J., Mehrara BJ FAU Disa, Joseph J., Disa JJ FAU Alektiar, Kaled M., Alektiar KM FAU Cordeiro, Peter G., & Cordeiro PG. Outcome of split-thickness skin grafts after external beam radiotherapy.
- 5. Chang RR FAU Mehrara, Babak J., Mehrara BJ FAU Hu, Qun-Ying, Hu QY FAU Disa, Joseph J., Disa JJ FAU Cordeiro, Peter G., & Cordeiro PG. Reconstruction of complex oncologic chest wall defects: A 10-year experience.
- 6. Chang, R. J., Kirkpatrick, K., De Boer, R. H., & Bruce Mann, G. (2013). Does immediate breast reconstruction compromise the delivery of adjuvant chemotherapy? *The Breast*, 22(1), 64-69. doi: http://dx.doi.org/10.1016/j.breast.2012.10.008
- 7. Crisera, C. A., Chang, E. I., Da Lio, A. L., Festekjian, J. H., & Mehrara, B. J. (2011). Immediate free flap reconstruction for advanced-stage breast cancer: Is it safe? *Plastic and Reconstructive Surgery*, 128(1), 32-41 10.1097/PRS.0b013e3182174119.
- 8. Dogan, L., Gulcelik, M. A., Karaman, N., Ozaslan, C., & Reis, E. (2013). Oncoplastic surgery in surgical treatment of breast cancer: Is the timing of adjuvant treatment affected? *Clinical Breast Cancer*, 13(3), 202-205. doi:http://dx.doi.org/10.1016/j.clbc.2012.09.015
- 9. Hultman CS FAU Daiza, Sumer, & Daiza S. Skin-sparing mastectomy flap complications after breast reconstruction: Review of incidence, management, and outcome.
- 10. Kontos, M., Lewis, R. S., Lüchtenborg, M., Holmberg, L., & Hamed, H. (2010). Does immediate breast reconstruction using free flaps lead to delay in the administration of adjuvant chemotherapy for breast cancer? *European Journal of Surgical Oncology (EJSO)*, 36(8), 745-749. doi: http://dx.doi.org/10.1016/j.ejso.2010.06.013
- 11. Kronowitz SJ FAU Robb, Geoffrey L., & Robb GL. Breast reconstruction and adjuvant therapies.
- 12. Larson, D. L., Basir, Z., & Bruce, T. (2011). Is oncologic safety compatible with a predictably viable mastectomy skin flap? *Plastic and Reconstructive Surgery*, 127(1), 27-33 10.1097/PRS.0b013e3181f9589a.
- 13. Lawrence WT FAU Zabell, A., Zabell A FAU McDonald, HD., & McDonald HD. The tolerance of skin grafts to postoperative radiation therapy in patients with soft-tissue sarcoma.
- 14. Oh, E., Chim, H., & Soltanian, H. T. (2012). The effects of neoadjuvant and adjuvant chemotherapy on the surgical outcomes of breast reconstruction. *Journal of Plastic, Reconstructive & Aesthetic Surgery*, 65(10), e267-e280. doi:http://dx.doi.org/10.1016/j.bjps.2012.04.053
- 15. Prabhu R FAU Godette, Karen, Godette K FAU Carlson, Grant, Carlson G FAU Losken, Albert, Losken A FAU Gabram, Sheryl, Gabram S FAU Fasola, Carolina, Fasola C FAU O'Regan, Ruth, . . . Torres M. The impact of skin-sparing mastectomy with immediate reconstruction in patients with stage III breast cancer treated with neoadjuvant chemotherapy and postmastectomy radiation.
- 16. Rivas B FAU Carrillo, J F., Carrillo JF FAU Escobar, G., & Escobar G. Reconstructive management of advanced breast cancer.
- 17. Sullivan, S. R., Fletcher, D. R. D., Isom, C. D., & Isik, F. F. (2008). True incidence of all complications following immediate and delayed breast reconstruction. *Plastic and Reconstructive Surgery*, 122(1), 19-28 10.1097/PRS.0b013e3181774267.
- 18. Taylor, C. W., Horgan, K., & Dodwell, D. (2005). Oncological aspects of breast reconstruction. *The Breast*, 14(2), 118-130. doi: http://dx.doi.org/10.1016/j.breast.2004.08.006
- 19. Vilarino-Varela M FAU Chin, Yaw Sinn, Chin YS FAU Makris, Andreas, & Makris A. Current indications for post-mastectomy radiation.
- 20. Woerdeman, L. A. E., Hage, J. J., Smeulders, M. J. C., Rutgers, E. J. T., & van der Horst, C. M. A. M. (2006). Skin-sparing mastectomy and immediate breast reconstruction by use of implants: An assessment of risk factors for complications and cancer control in 120 patients. *Plastic and Reconstructive Surgery*, 118(2), 321-330 10.1097/01.prs.0000234049.91710.ba.

Tamoxifen

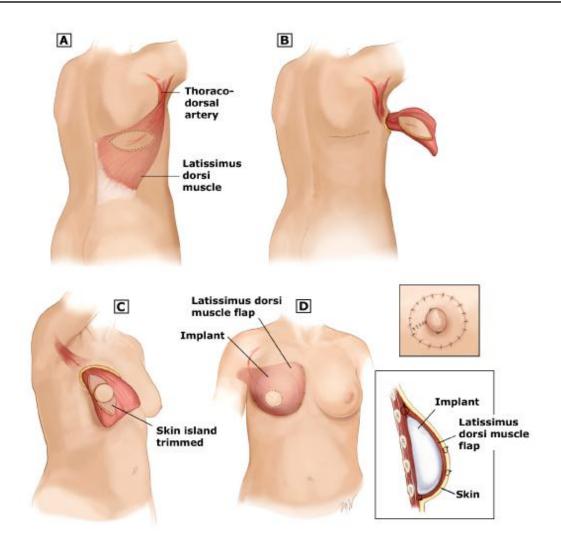
- □ Estrogen agonist-antagonist
- □ In molar excess it acts like a competitive antagonist of estrogen activity in the breast but not in other estrogen- sensitive tissues, hence the side-effects.
 - Hot flushes
 - ↑ Endometrial Ca
 - Tromboembolism

Implant –based techniques

- □ Indications
 - Skin envelope adequate
 - Smaller, minimally ptotic breasts
 - Contralateral breast surgery planned for symmetry
 - Distant donor site/ surgical risk unacceptable
- Contraindications
 - Planned postop RT
 - Implant unacceptable
 - Large ptotic breast to match (relative)
 - Unstable circulation in skin envelope (relative)
 - Current smoker (relative)


Implant –based techniques

- □ Advantages
 - Surgical simplicity
 - Cosmeticically similar adjajent tissue cover implant
 - No donor site morbidity
 - \blacksquare \downarrow operative time
 - Rapid postop recovery (7-10 d)
- Disadvantages
 - Frequent clinic visits
 - 2nd Surgery
 - Better cosmesis and pt satisfaction with autogenous techniques
- Complications
 - Infection
 - Capsular contracture
 - Deflation


Mastectomy flap necrosis

- Hultman et al. Factors associated with flap complications
- □ ↑BMI
- Previous breast/ mediastinal irradiation
- Need for reoperation
- □ Not significant

Implant Breast Reconstruction

Latissimus dorsi flap reconstruction

Latissimus dorsi musculocutaneous flap

□ Indications

- Inadequate skin envelope, other flaps unavailable
- Skin-sparing mastectomy: Skin island for NAC, or muscle coverage
- Autogenous recon: other donor sites unavailable
- Recon of quadrantectomy segmental defect fro BCS
- Recon of Poland syndrome with breast agenesis

Latissimus dorsi musculocutaneous flap

Contraindications

- Prior lateral thoracotomy, lats divided
- Prior division thoracodorsal a, vv (relative if branches via serratus ant muscle to lats intact)
- Planned RT post recon (relative)
- Prior RT to ipsilateral post sup trunk (relative)
- Competitive athlete using lats (relative)
- Current smoker (relative)

Latissimus dorsi musculocutaneous flap

- □ Advantages
 - Reliable, suitable to marginal candidates for more complicated flap techniques
- Disadvantages
 - Donor site scarring
 - Implant and/or expander needed
- Complications
 - Seroma donor site
 - Hematoma
 - Infection
 - Fat necrosis
 - Partial or total flap loss (Low)

TNM Classification

- - Tis Carcinoma in situ
 - $T1 \le 2cm$
 - T2 > 2 cm \leq 5cm
 - T3 > 5 cm
 - T4 any size extension to chest wall (T4a), or skin (T4b), or both (T4c). Inflammatory carcinoma (T4d)
- \square N
 - N0 No regional nodes
 - N1 1-3 axillary nodes + and/or int. mammary + by biopsy
 - N2 4-9 axillary nodes + or int. mammary clinically +
 - $N3 \ge 10$ axillary nodes + or axillary and int. mammary metastasis
- \square M
 - M0 no distant metastasis
 - M1 distant metastasis

St Gallen

```
Low risk
N- and all of:
                  pT \le 2cm
            Grade 1
            Absence extensive peritumoral vascular invasion
            ER and/ or PgR +
            Her2/ Neu gene -
            Age≥ 35 yrs
            Intermediate risk
Node – and at least one of:
                  pT > 2cm
            Grade 2-3
            Presence extensive peritumoral vascular invasion
            ER and PgR -
            Her2/ neu +
            Age < 35 yrs
            Node + (1-3) and
                  ER/PgR + and
            Her2/neu -
            High risk
Node + (1-3) and
                  ER and PgR -
            HER2/neu +
```

Node + (4 or more)

Patient number Standard Compression/ Number with Node positive at Study Number with Mean tumour mammogram displacement abnormal abnormal radiology presentation (%) size (cms) (including mammogram ultrasound) Leibman and Kruse²⁶ 9/11 9/11 (82%) 10/11 (91%) 11 2/11 4/11 (36%) NS Silverstein et al. 29 42 35/42 7/42 27/42 (64%) 19/38 (50%) 2.3 NS Carlson et al.30 35 31/35 0/35 19/31 (61%) NS 17/31 (55%) 16/35 (46%) Clarke et al.31 33 29/33 19/29 (66%) 23/33 (70%) 6/31 (19%) 1.5 Cahan et al.28

NS 4/23 detected

by mammogram

alone

NS

1.2

7/22 (32%)

NS

Table 2

Breast cancer detection after previous augmentation.

NS

22

Study	Patient number	Follow-up Mean/median (months)	Cosmesis (% good/excellent)	Capsular contracture (%)	
Ryu et al. ⁶⁶	3	30	1/3 (33%)	1/3 (33%)	
Chu et al.56	7	44	6/7 (86%)	NS	
Guenther et al. 67	20	46	17/20 (85%)	NS	
Handel et al.68	26	36	NS	17/26 (65%)	
Mark et al. ⁶⁹	21	22	9/21 (43%)	12/21(57%)	
Victor et al.62	9	32	8/8 (100%)	0/8	
Karanas et al. 70	19	38		3/19 (16%)	

Study	Patient number	Follow-up Mean/median (months)	Reconstruction type	Cosmesis (% good/excellent)	Flap complications (%)
Williams et al. 80	19	53.2	TRAM	NS	3/19 (15.8%) fat necrosis 6/19 (31.6%) fibrosis
Zimmerman et al.81	21	19	TRAM	18/20 (90%)	0/21 flap complications
Tran et al. ⁸²	41	36	TRAM	7/41 (17%) good symmetry	10/41 (24%) flap contracture 14/41 (34%) fat necrosis
Rogers and Allen ⁸³	30	19.9	Deep inferior epigastric perforator flap	Assessed in 10 patients	5/30 (17%) flap contracture
				7/10—worse cosmesis after radiotherapy	7/30 (23%) fat necrosis