IATROGENIC OESOPHAGEAL PERFORATION

TAOLE MOKOENA DPhil FRCS PROFESSOR OF SURGERY UNIVERSITY OF PRETORIA

17TH Controversies and Problems in Surgery Symposium 4-5 October 2013

Introduction

- Perforation of the oesophagus although rare presents one of the most vexing management problems in Surgery
- Associated with a every high morbidity and mortality which
- Worse with delay of diagnosis and appropriate treatment^{1,2}

Reasons for latrogenic Oesophageal Perforation

- Oesophageal Dilatation both benign and malignant strictures
- Diagnostic upper GI endoscopy esp rigid
- Transoesophageal echocardiograph
- Oesophageal varices treatment
- Other
 - aortic stent implantation
 - osteosynthesis of cervical spine
 - Endoscopic procedures e.g. mucosectomy

Adapted from Vallbohmer et al 2010, Schmidt 2010

Diagnosis of latrogenic Oesophageal Perforation

- > Thoracic oesophagus poses the most diagnostic challenges.
- High index of suspicion when oesophagoscopy or intervention procedure is not progressing easily
- Early diagnostic investigation should be instituted before any symptoms or signs
 - endoscopy
 - radiocontrast study
 - plan radiograph may show extraneous gas
 - barium swallow gives better results!
 - Contrast CT scan if diagnosis delayed will show
 - mediastinitis
 - Pus/fluid collections

Symptom	n (%)
Dysphagia	50 (80.6)
Thoracic pain	35 (56.5)
Nausea/regurgitation	31 (50)
Fever	24 (38.7)
Mediastinitis	12 (19.4)
Pleural effusion	11 (17.7)
Subcutaneous emphysema	8 (12.9)
Pneumothorax	8 (12.9)
Mediastinal emphysema	4 (6.5)

Table 2 Clinical presentation of patients with esophageal perforation

Schmidt 2010

Note main symptom dysphagia and odynophagia

Approach to Management of Oesophageal Perforation

- Resuscitation
- Infection source Control
- Closure of perforation
- Nutritional support including enteral access
- Main problems arise from thoracic oesophageal perforations

Resuscitation in Perforated Oesophagus

- Late presentation may present in shock
- Resuscitation of chronically dehydrated patients should be cautious
 - they develop pulmonary oedema.
 - use urine output rather than blood pressure to guide fluid requirement.
- Although these patients usually have low albumin, use of albumin as part of resuscitation fluid is not profitable.

Infection Source Control

- Use of broad spectrum antibiotics
 - parenteral
 - oral antibiotic suspension in addition is controversial
- drain free pleural perforation and mediastinal fluid/pus
 - tube thoracostomy
 - "pigtail" drain under CT guide
- Cervical diversion oesophagostomy in special cases.

Closure of Perforation^{1,2,3,4}

- Operative strategies
 - Thoracotomy repair advocated in early diagnosis but carries significant morbidity and mortality
 - Thoracoscopic repair is alternate technique
 - Endoscopic clip repair (new)
 - Endoscopic suture repair (experimental)
 - T-tube placement
 - Damage control stapling above and below perforation with cervical oesophagostomy or active NGT suction

Stent Perforation Occlusion ^{3, 6}

- Traditional plastic stent, e.g. Proctor-Livingstone and Celestine need general anaesthetic (GA)
 - > occlusion or tamponade often incomplete
 - Difficult to remove and need GA
- New covered self-expanding stents placed under conscious sedations
 - > Covered self-expanding stents can be metal or plastic
 - > major problem is stent migration
 - ➤ readily removable
 - ➢ Good results, oral feeding can start early

Endoscopic Vacuum Therapy 7,8

- New strategy of Vacuum Assisted Care has been described
 - Intraluminally placed polyurethane sponge placement
 - Intracavity placed polyurethane sponge
- Large majority healed without recourse to surgery and with very few complications!

Aggressive Non-Operative Treatment ⁹

- Active and aggressive non-operative treatment showed lower morbidity and mortality.
- Drainage of all fluid collections

Tube thoracostomy

CT guided "pig-tail" placement in mediastinum or costophrenic grooves

Discharge	No.	Mortality	Healing At
Cervical esophagus	10		9/10
Primary repair	3	_	Fistula
Abscess drainage	3	_	
Nonoperative	4	_	
Thoracic esophagus	34*	2	31/32
Primary repair	2	(1)	
Surgical drainage	4	(1)	
Nonoperative	28	_	Fistula into empyema tube (subsequently healed)

. . a 175 201 ю. 10

*Excluding 3 dissecting aneurysm patients.

(Vogel 2005)

Note: No mortality for non-operative

Variable	Score (range 1-3)
Age >75 years	1
Tachycardia >100 beats/min	1
Leukocytosis >10 000 WBC/ml	1
Pleural effusion (on CXR or CT)	1
Fever >38.5°C	2
Noncontained leak (on CT or	2
barium swallow)	
Respiratory compromise	2
(respiratory rate >30,	
mechanical ventilation)	
Time to diagnosis >24 h	2
Cancer	3
Hypotension	3
Total potential score	18

Table 1 Esophageal perforation severity score

CT, computed tomography; CXR, chest x-ray; WBC, white blood cell. Data from [6*].

(Sepesi 2010)

Table 2 Outcomes of patients with esophageal perforation based on a perforation score (0-18)

	Clinical score			
	$\leq 2 (n = 44)$	3-5 (<i>n</i> =49)	>5 (<i>n</i> =26)	
Complication rate (%)	53	65	81	
Mortality (%)	2	6	27	
Length of stay (days)	10	16	28	
Data from [6 [•]]				

Data from [6*].

(Sepesi 2010)

Note the higher the score, the higher the complications and mortality

Summary

- latrogenic perforation rare but dread complication of upper GI diagnostic and interventional endoscopy
- Challenges with diagnosis for oesophagus thoracic
 - Late intervention
 - ➢ High mortality
 - Demands high level of vigilance
- Malignant perforations managed with endoluminal stents
- Benign perforations
 - Aggressive non-operative management
 - Drainage of fluid or pus collections
 - VAC drainage new strategy
 - Diversion oesophagostomy in special cases especially long or multiple caustic strictures
 - primary debridement and repair eschewed
- Nutritional support paramount preferably enteral
- New oesophageal perforation score helps with prognosis
- Single key predictor of good outcome is early diagnosis and intervention .

References

References

- 1. Vallböhmer D, Hölscher AH, Hölscher M, et al Options in the management of esophageal perforation: analysis over a 12 year period Diseases of the Esophagus 2010;23:185-190
- 2. Schmidt SC, Strauch S, Rösch T, et al. Management of esophageal perforations. Surg Endosc 2010; 24: 2809-2813
- 3. Sepesi B, Raymond DP Peters JH. Esophageal perforations: surgical, endoscopic and medical management strategies. Curr Opin Gastroenterol 2010; <u>26</u>: 379-383
- 4. Bufkin BL, Miller JI jr, Mansour KA. Esophageal perforation: emphasis on management. Ann Thorac Surg 1996;<u>61</u>:1447-1452
- Fritscher-Ravens A, Hampe J, Grange P et al, Clip closure versus endoscopic suturing versus thoracoscopic repair of iatrogenic esophagel perforation: a randomized, comparative, long-term survival study in a porcine model. Gastrointest Endosc 2010; <u>72</u>: 1020-1026
- 6. Johnsson E, Lundell L, Liedman B. Sealing of esophageal perforation or ruptures with expandable metallic stents: A prospective controlled study on treatment efficacy and limitations. Dis Esoph 2005; <u>18</u>: 262-266
- 7. Ahrens M, Schutte T, Egberts J et al Drainage of esophageal leakage using endoscopic vacuum therapy: a prospective pilot study. Endoscopy 2010; <u>42</u>: 693-698
- 8. Schorsh T, Műller C, Loske G. Endoscopic vacuum therapy of anastomotic leakage and iatrogenic perforation in the esophagus. Surg Endosc 2013; <u>27</u>: 2040-2045
- 9. Vogel SB, Rout WR, Martin TD, Abbitt PL. Esophageal Perforation in Adults: Aggressive Conservation Treatment Lowers Morbidity and Mortality. Ann Surg 2005; <u>241</u>:1016-1023

THANK YOU DANKIE RE YA LEBOGA