Introduction

• Perforation of the oesophagus although rare presents one of the most vexing management problems in Surgery
• Associated with a very high morbidity and mortality which
• Worse with delay of diagnosis and appropriate treatment1,2
Reasons for Iatrogenic Oesophageal Perforation

- Oesophageal Dilatation both benign and malignant strictures
- Diagnostic upper GI endoscopy esp rigid
- Transoesophageal echocardiograph
- Oesophageal varices treatment
- Other
 - aortic stent implantation
 - osteosynthesis of cervical spine
 - Endoscopic procedures e.g. mucosectomy

Adapted from Vallbohmer et al 2010, Schmidt 2010
Diagnosis of Iatrogenic Oesophageal Perforation

- Thoracic oesophagus poses the most diagnostic challenges.
- High index of suspicion when oesophagoscopy or intervention procedure is not progressing easily.
- Early diagnostic investigation should be instituted before any symptoms or signs:
 - endoscopy
 - radiocontrast study
 - plan radiograph may show extraneous gas
 - barium swallow gives better results!
 - Contrast CT scan if diagnosis delayed will show
 - mediastinitis
 - Pus/fluid collections
Table 2 Clinical presentation of patients with esophageal perforation

<table>
<thead>
<tr>
<th>Symptom</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysphagia</td>
<td>50 (80.6)</td>
</tr>
<tr>
<td>Thoracic pain</td>
<td>35 (56.5)</td>
</tr>
<tr>
<td>Nausea/regurgitation</td>
<td>31 (50)</td>
</tr>
<tr>
<td>Fever</td>
<td>24 (38.7)</td>
</tr>
<tr>
<td>Mediastinitis</td>
<td>12 (19.4)</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>11 (17.7)</td>
</tr>
<tr>
<td>Subcutaneous emphysema</td>
<td>8 (12.9)</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>8 (12.9)</td>
</tr>
<tr>
<td>Mediastinal emphysema</td>
<td>4 (6.5)</td>
</tr>
</tbody>
</table>

Schmidt 2010

Note main symptom dysphagia and odynophagia
Approach to Management of Oesophageal Perforation

- Resuscitation
- Infection source Control
- Closure of perforation
- Nutritional support including enteral access
- Main problems arise from thoracic oesophageal perforations
Resuscitation in Perforated Oesophagus

• Late presentation may present in shock
• Resuscitation of chronically dehydrated patients should be cautious
 – they develop pulmonary oedema.
 – use urine output rather than blood pressure to guide fluid requirement.
• Although these patients usually have low albumin, use of albumin as part of resuscitation fluid is not profitable.
Infection Source Control

- Use of broad spectrum antibiotics
 - parenteral
 - oral antibiotic suspension in addition is controversial
- drain free pleural perforation and mediastinal fluid/pus
 - tube thoracostomy
 - “pigtail” drain under CT guide
- Cervical diversion oesophagostomy in special cases.
Closure of Perforation1,2,3,4

- Operative strategies
 - Thoracotomy repair advocated in early diagnosis but carries significant morbidity and mortality
 - Thoracoscopic repair is alternate technique
 - Endoscopic clip repair (new)
 - Endoscopic suture repair (experimental)
 - T-tube placement
 - Damage control stapling above and below perforation with cervical oesophagostomy or active NGT suction
Stent Perforation Occlusion 3, 6

• Traditional plastic stent, e.g. Proctor-Livingstone and Celestine need general anaesthetic (GA)
 ➢ occlusion or tamponade often incomplete
 ➢ Difficult to remove and need GA
• New covered self-expanding stents placed under conscious sedations
 ➢ Covered self-expanding stents can be metal or plastic
 ➢ major problem is stent migration
 ➢ readily removable
 ➢ Good results, oral feeding can start early
Endoscopic Vacuum Therapy

- New strategy of Vacuum Assisted Care has been described
 - Intraluminally placed polyurethane sponge placement
 - Intracavity placed polyurethane sponge
- Large majority healed without recourse to surgery and with very few complications!
Aggressive Non-Operative Treatment

• Active and aggressive non-operative treatment showed lower morbidity and mortality.

• Drainage of all fluid collections
 - Tube thoracostomy
 - CT guided “pig-tail” placement in mediastinum or costophrenic grooves
TABLE 2. Treatment of Esophageal Perforations

<table>
<thead>
<tr>
<th>Discharge</th>
<th>No.</th>
<th>Mortality</th>
<th>Healing At</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical esophagus</td>
<td>10</td>
<td>—</td>
<td>9/10</td>
</tr>
<tr>
<td>Primary repair</td>
<td>3</td>
<td>—</td>
<td>Fistula</td>
</tr>
<tr>
<td>Abscess drainage</td>
<td>3</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Nonoperative</td>
<td>4</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Thoracic esophagus</td>
<td>34*</td>
<td>2</td>
<td>31/32</td>
</tr>
<tr>
<td>Primary repair</td>
<td>2</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Surgical drainage</td>
<td>4</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>Nonoperative</td>
<td>28</td>
<td>—</td>
<td>Fistula into empyema tube (subsequently healed)</td>
</tr>
</tbody>
</table>

*Excluding 3 dissecting aneurysm patients.

(Vogel 2005)

Note: No mortality for non-operative
Table 1 Esophageal perforation severity score

<table>
<thead>
<tr>
<th>Variable</th>
<th>Score (range 1–3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age >75 years</td>
<td>1</td>
</tr>
<tr>
<td>Tachycardia >100 beats/min</td>
<td>1</td>
</tr>
<tr>
<td>Leukocytosis >10 000 WBC/ml</td>
<td>1</td>
</tr>
<tr>
<td>Pleural effusion (on CXR or CT)</td>
<td>1</td>
</tr>
<tr>
<td>Fever >38.5°C</td>
<td>2</td>
</tr>
<tr>
<td>Noncontained leak (on CT or barium swallow)</td>
<td>2</td>
</tr>
<tr>
<td>Respiratory compromise (respiratory rate >30, mechanical ventilation)</td>
<td>2</td>
</tr>
<tr>
<td>Time to diagnosis >24 h</td>
<td>2</td>
</tr>
<tr>
<td>Cancer</td>
<td>3</td>
</tr>
<tr>
<td>Hypotension</td>
<td>3</td>
</tr>
<tr>
<td>Total potential score</td>
<td>18</td>
</tr>
</tbody>
</table>

CT, computed tomography; CXR, chest x-ray; WBC, white blood cell. Data from [6*].

(Sepesi 2010)
Table 2 Outcomes of patients with esophageal perforation based on a perforation score (0–18)

<table>
<thead>
<tr>
<th>Clinical score</th>
<th>≤2 (n=44)</th>
<th>3–5 (n=49)</th>
<th>>5 (n=26)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complication rate (%)</td>
<td>53</td>
<td>65</td>
<td>81</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>2</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>10</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>

Data from [6*].

(Sepesi 2010)

Note the higher the score, the higher the complications and mortality
Summary

- Iatrogenic perforation rare but dread complication of upper GI diagnostic and interventional endoscopy

- Challenges with diagnosis for oesophagus thoracic
 - Late intervention
 - High mortality
 - Demands high level of vigilance

- Malignant perforations managed with endoluminal stents

- Benign perforations
 - Aggressive non-operative management
 - Drainage of fluid or pus collections
 - VAC drainage new strategy
 - Diversion oesophagostomy in special cases especially long or multiple caustic strictures
 - primary debridement and repair eschewed

- Nutritional support paramount preferably enteral

- New oesophageal perforation score helps with prognosis

- Single key predictor of good outcome is early diagnosis and intervention.
References

THANK YOU
DANKIE
RE YA LEOBOGA