

Ventilation : getting started

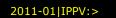
Richard Peter von Rahden

rpvr

RP von Rahden : Affiliations

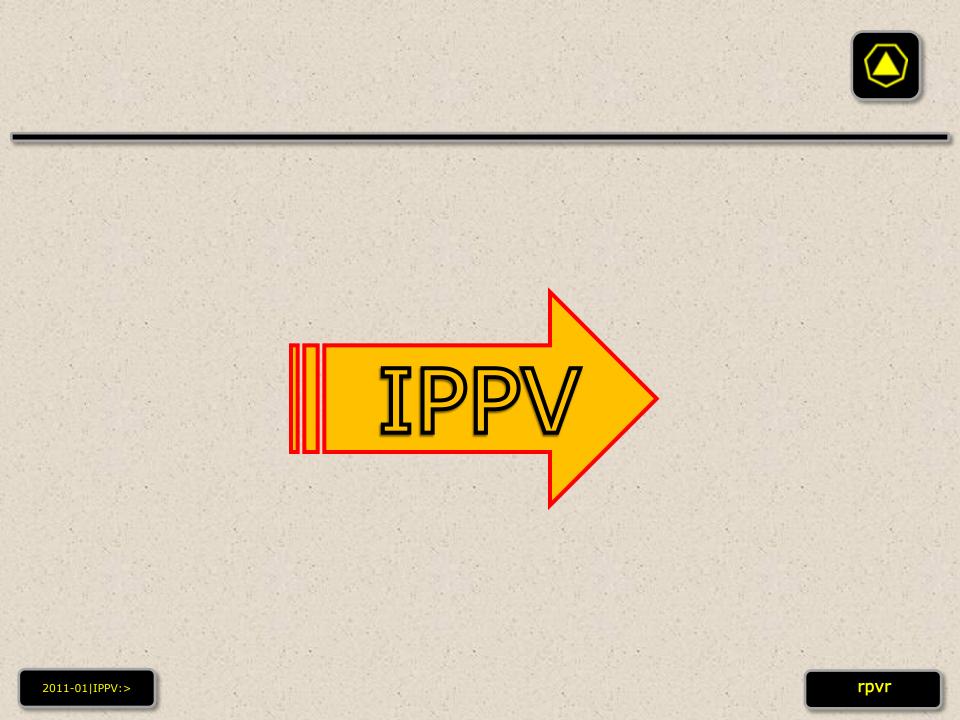
HEALTH KwaZulu-Natal

Pietermaritzburg Metropolitan Department of Anaesthesia, Critical Care & Pain Management



Head Clinical Unit (Critical Care)

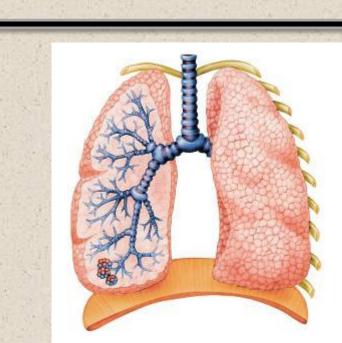
UNIVERSITY OF KWAZULU-NATAL **Department of Anaesthesia**


Honorary Lecturer

RP von Rahden : Declarations

- Lectured for, with honoraria:
 - Scientific Group
 - Adcock-Ingram Critical Care
- Prize conference sponsorships:
 - Teleflex Medical
- Conference sponsorships:
 - Fresenius-Kabi
 - Adcock-Ingram Critical Care
 - Aspen

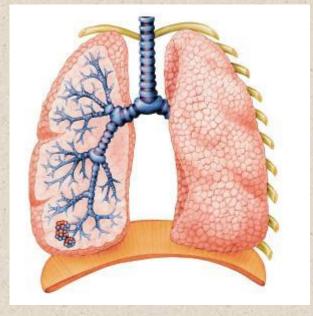
Intermittent Positive Pressure Ventilation



Blowing air into the lungs.

Why ventilate?

Pulmonary functions


 Oxygen
 air → blood >> cells
 Carbon dioxide
 air ← blood << cells

Why ventilate?

- Pulmonary functions
 Oxygen
 blood >> cells
 Carb dioxide
 Carb dioxide
- "Respiratory Failure"
 actual
 imminent

Respiratory Failure

FAILURE OF OXYGENATION \$ Low SaO₂ = <u>THE</u> problem! Low O₂ in blood → low O₂ in cells → cells die

• Failure of CO_2 elimination

^PaCO₂ : low attributable damage
 unless ↑ICP, ↑PAP, massive acidosis
 ^PaCO₂ → ↑SNS tone, ↓inflammation

Respiratory Failure : Classification

"Type 1"

 low PaO₂
 normal PaCO₂

"Type 2"
 low PaO₂
 high PaCO₂

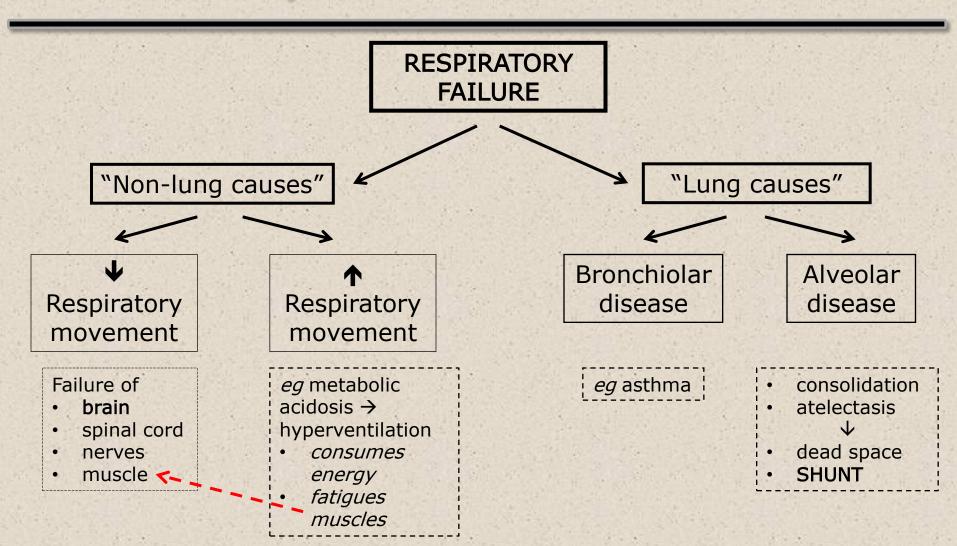
Can you remember this?

> Does this help you fix the problem?

Before we ventilate...

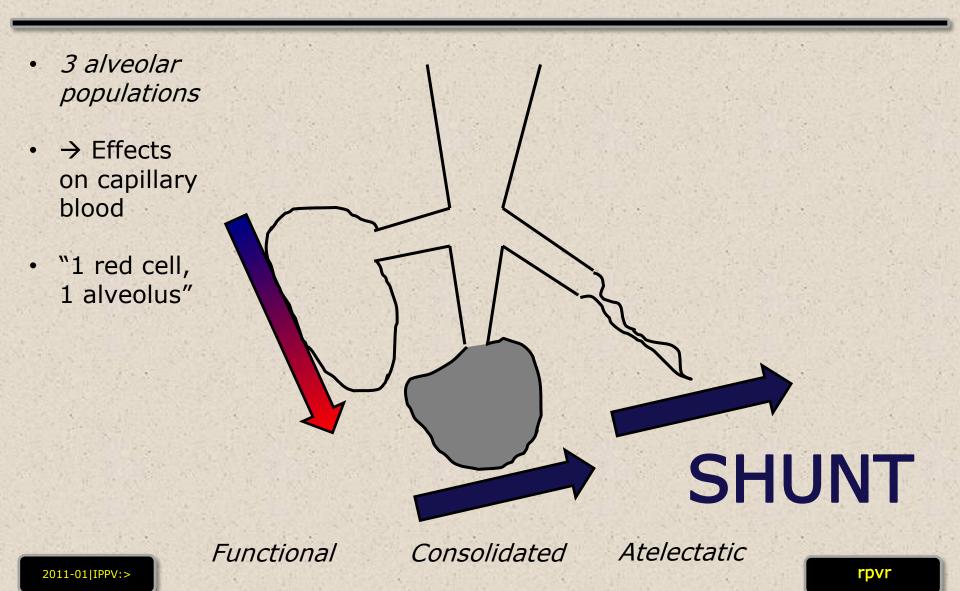
We MUST recognize:

- o why is there respiratory failure?
- o what do we want IPPV to fix?


• Affects:

- immediate goals
- methods of ventilation
- endpoint

Respiratory failure mechanisms


with thanks to Dr RE Hodgson!

Alveolar disease

Shunt

 Commonest cause of hypoxaemia from alveolar lung disease.

Shunt

- Commonest cause of hypoxaemia from alveolar lung disease.
- Management:
 - recruit atelectatic alveoli
 - IPPV may help
 - prevent atelectasis worsening
 - IPPV helps ... PEEP
 - clear consolidation
 - time, drugs ... IPPV not helpful
 - don't damage functional alveoli
 - BEWARE: IPPV may injure them!

IPPV goals ...

1 goal= adequate oxygenation of blood
 ○ Overwhelming importance
 ○ SaO₂ ≥ 90% (adult)

IPPV goals ...

- 1 goal = adequate oxygenation of blood
 - Overwhelming importance
 - \circ SaO₂ ≥ 90% (adult)
- 2 goal = eliminate CO₂
 De-emphasized / low priority
 Only relevant if ↑ICP, ↑PAP
 aim PaCO₂ 5kPa
 - o ??? control if profound metabolic acidosis ???

IPPV goals ...

1 goal= adequate oxygenation of blood
 Overwhelming importance
 SaO₂ ≥ 90% (adult)

2 goal = eliminate CO₂
○ De-emphasized / low priority
○ Only relevant if ↑ICP, ↑PAP
• aim PaCO₂ 5kPa
• ??? control if profound metabolic acidosis ???

3 goal = ♥ Work of Breathing

... IPPV goals

- Do the above...
 WHILE MINIMIZING DAMAGE!
- Lungs made for negative pressure

 <u>POSITIVE PRESSURE CAUSES LUNG DAMAGE.</u>
 - IPPV <u>rarely</u> helps lung
 - ? recruitment = exception ?

Volutrauma

- o = breaths too big = "excessive Tidal Volume"
- ∘ Target $V_T \le 6ml / kg$ IDEAL mass for height

Volutrauma

- o = breaths too big = "excessive Tidal Volume"
- $_{\circ}$ Target V_T ≤ 6ml / kg IDEAL mass for height

Barotrauma

- pressures too high
- Keep $P_{plateau}$ [Volume mode] | P_{max} [Pressure mode] ≤ 30 cmH₂O

- Volutrauma
 - o = breaths too big = "excessive Tidal Volume"
 - $_{\circ}~$ Target V_T \leq 6ml / kg IDEAL mass for height

Barotrauma

- = pressures too high
- Keep $P_{plateau}$ [Volume mode] | P_{max} [Pressure mode] $\leq 30 \text{ cmH}_2\text{O}$

Atelectrauma

- $_{\circ}$ = alveoli collapse between breaths, then snap open
- ∘ Splint alveoli open with enough PEEP : $\geq 10 \text{cmH}_2\text{O}$ (rpvr)

Volutrauma

- o = breaths too big = "excessive Tidal Volume"
- $_{\circ}$ Target V_T ≤ 6ml / kg IDEAL mass for height

Barotrauma

- = pressures too high
- Keep $P_{plateau}$ [Volume mode] | P_{max} [Pressure mode] $\leq 30 \text{ cmH}_2\text{O}$

Atelectrauma

- = alveoli collapse between breaths, then snap open
- Splint alveoli open with enough PEEP : $≥10cmH_2O$ (rpvr)

Oxytrauma

- $_{\circ}$ = chemical damage from high FiO₂
- Get FiO₂ below 60% as soon as possible
 - only need to achieve SaO₂ of 90%!

Starting strategies

- 2 fundamental strategies
 - "Lung protective"

"Neuroprotective"

DEFAULT

If \uparrow ICP

also severe Pulmonary Hypertension

?? severe Metabolic Acidosis ??

"Lung protective ventilation"

- = Default strategy
 - for almost all types of Respiratory Failure
- Goal : SaO₂ = 90%
- With
 - $_{\circ}$ V_T ≤ 6ml / kg IDEAL mass for height
 - $_{\circ}$ Pplateau | Pmax ≤ 30 cmH₂O
 - ∘ PEEP ≥ $10 \text{ cmH}_2\text{O}$
 - recruitment if diffuse atelectasis likely
 - $_{\circ}$ FiO₂ < 60% ASAP (though start at 100%)

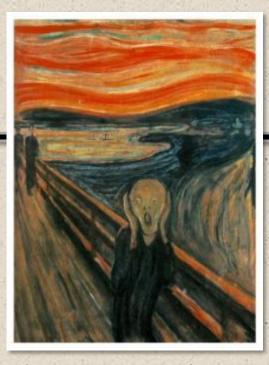
"Neuroprotective ventilation"

Try do all the above (SaO2 \ge 90%), but also keep PaCO₂ = 5.0 \pm 0.2 kPa

Controlling PaCO₂

- PaCO₂ inverse to Minute Volume

 Minute Volume = V_T x Respiratory Rate
- ↑ PaCO₂ ? : fix by ↑ Minute Volume!
 ↑ Respiratory Rate :
 - (practical maximum 24 / min in adult)
 - ∘ $PaCO_2$ still \uparrow ? : \uparrow V_T , \uparrow P above the limits
 - Brain takes precedence over lungs.
- Only "neuroprotect" if <u>really</u> indicated!
 ↑V_T, ↑P to ♥PaCO₂ damage lungs


Non-invasive ventilation?

- Endotracheal intubation = default
- Non-invasive ventilation very useful!
 avoids perils of intubation
 - not for unskilled use on sick patients
 - IF SEVERE RESPIRATORY FAILURE : INTUBATE

NIV useful alone for

- COPD exacerbations
- Cardiac failure

"It's all so complicated!"

"Modes" of ventilation

- Dozens of ways ventilators could work!
- Manufacturer terminology inconsistent

Defined by

- Gasflow targeted to achieve
 - a certain tidal volume
 - a certain pressure

"Volume modes" "Pressure modes"

- Degree of patient interaction allowed
 - Controlled
 - Assisted
 - Supported
 - Mixed (SIMV-like)

Volume modes vs pressure modes

- Primary machine target =

 achieve set VOLUME over a set time |
 blow air to set PRESSURE for set time
- V_T = <u>compliance</u> * driving Pressure
 set one parameter check the other
- Either can achieve the same effect!

 if targets achieved
- No overall outcome differences

P

Volume modes

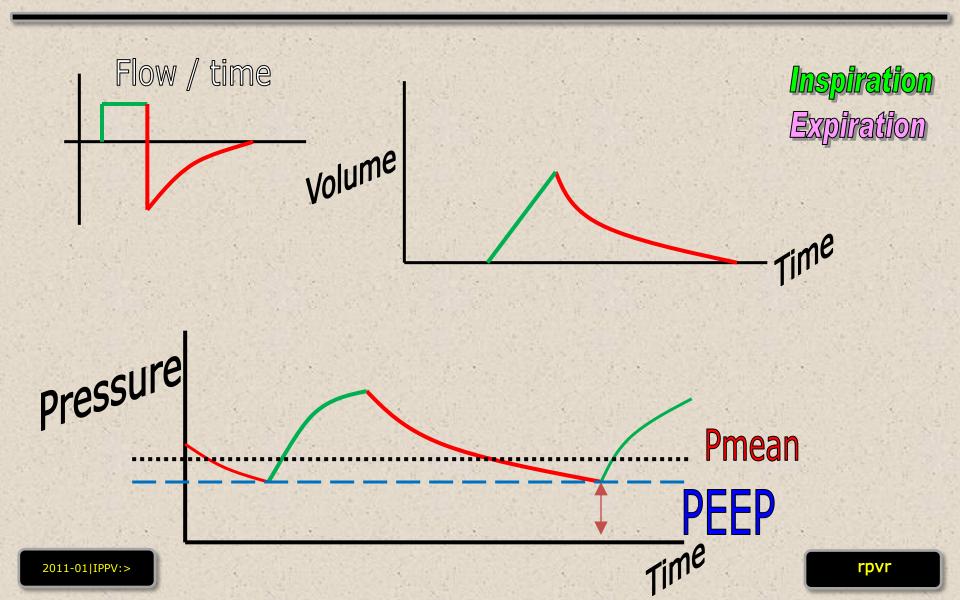
• Pros:

- always get a guaranteed volume
 - NB in OR
- may recruit collapsed lung better (but high P's!)

Cons

patient dyssynchrony
 squarewave gasflow on older machines
 high pressures can occur
 set pause | plateau time

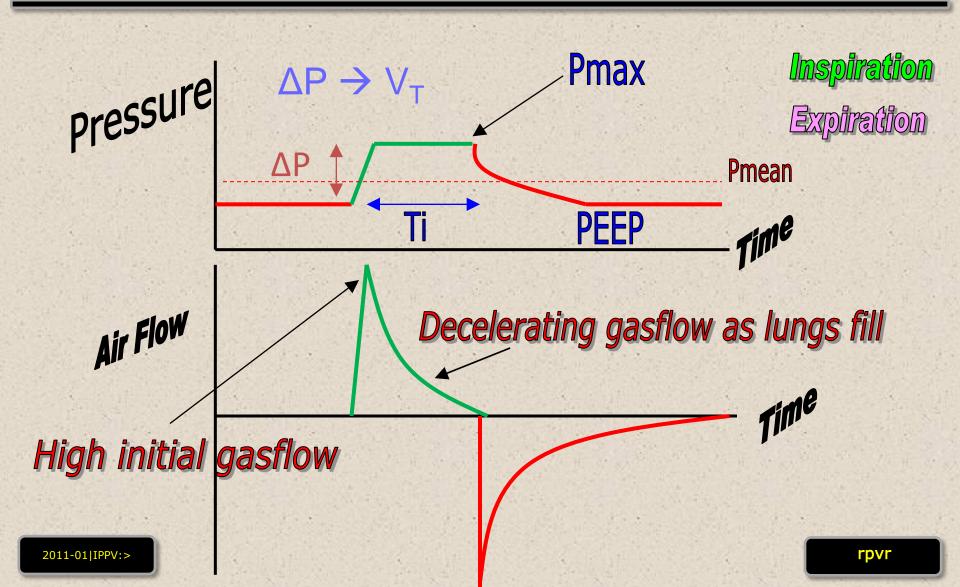
Pressure modes



Pros

- pressure limited
- gasflow more physiological patient synchrony
- copes with leaks
 - paediatric uncuffed ett
- Cons
 - Ti setting vital, variable VT if not monitored
 - does not recruit already-collapsed lung as well

Volume mode



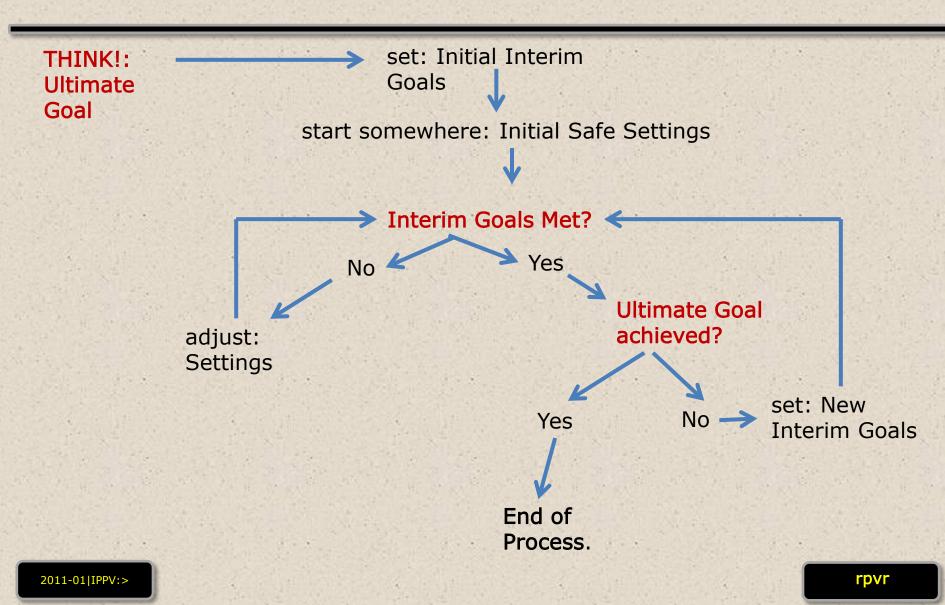
Pressure Control

Modes: patient interaction

Mode	Starting inspiration / Trigger	Ending inspiration/ Cycle to expiration/ Control Ti inspiration duration	Patient input
Controlled	Ventilator	Ventilator	0
Assisted	Patient	Ventilator	+
Supported	Patient	Patient	++

- Controlled or Assisted modes can be Volume or Pressure targeted.
- Supported modes : Pressure targeted
- Controlled and Assisted modes often combined into "Assist-Control"
- SIMV effectively a mix of all 3...

All this data



What do I do?!!

Critical care cycle

Initial goal

- "Capture"
 - Anaesthetize
 - Intubate
 - Deep sedation
 - Control ventilation (Assist-CONTROL mode)
- ■ Recruit
 (if: skills ✓ pathology ✓)
- Oxygenate!

 FiO2 90%
 Lung-protective limits

Pietermaritzburg Metropolitan Department of Anaesthesia, Critical Care & Pain Management

"THE PMB WAY"

Universal initial ventilator settings : Bear 1000 : Adult & Paediatric ≥ 10kg

Preset:

Mode:	Pressure Control	(=Pressure-Targeted Assist-Control)
PEEP:	10	cmH ₂ O
Rate:	15-20	breaths/min
FiO ₂ :	100	%
Assist Sensitivity	1	cmH ₂ O
Inspiratory Time	1.0 – 1.5	S
Inspiratory Pressure	5	cmH ₂ O (above PEEP)
Slope	-3	

Connect patient.

Adjust **Inspiratory Pressure** over first few breaths, to maximum $20 \text{cmH}_2\text{O}$ Goal: Measured Tidal Volume = 6 ml/kg ideal mass for height (*F*~400*ml*, *M*~500*ml*)

For first hour: review every 10minutes

If $\text{SpO}_2 \ge 95\%$ reduce FiO_2 by 10% until $\text{FiO}_2 = 40\%$ | Increase FiO_2 by 10% if $\text{SpO}_2 < 90\%$ Adjust Inspiratory Pressure to keep Measured Tidal Volume = 6ml/kg If regular patient triggers, can reduce Rate to 10 breaths / minute. Consider ABG after 1hour. Review SpO_2 , Tidal Volume and patient effort 1-hourly thereafter.

Pietermaritzburg Metropolitan Department of Anaesthesia, Critical Care & Pain Management

"THE PMB WAY"

Universal initial ventilator settings : Servo-i : Adult & Paediatric ≥ 10kg				
		(configured for Ti setting)		
Preset:				
Mode:	Pressure Control	(=Pressure-Targeted Assist-Control)		
PEEP:	10	cmH ₂ O		
Resp Rate:	15-20	breaths/min		
O_2 Conc:	100	%		
TriggFlow	1	L/min		
Ti	1.0 – 1.5	S		
TinspRise	0.15	S		
PC above PEEP	5	cmH ₂ O		

Connect patient. Adjust **PC above PEEP** over first few breaths, to maximum $20\text{cmH}_2\text{O}$ Goal: Measured Tidal Volume = 6ml/kg ideal mass for height (*F*≈400ml, *M*≈500ml)

For first hour: review every 10minutes

If SpO₂ \ge 95% reduce O₂Conc by 10% until FiO₂ = 40% | Increase O₂Conc by 10% if SpO₂ <90% Adjust PC above PEEP to keep Measured Tidal Volume = 6ml/kg If regular patient triggers, can reduce RespRate to 10 breaths / minute. Consider ABG after 1hour. Review SpO₂, Tidal Volume and patient effort 1-hourly thereafter.

Pietermaritzburg Metropolitan Department of Anaesthesia, Critical Care & Pain Management

"THE PMB WAY"

Universal initial ventilator settings : Dräger Savina & Evita 2 : Adult & Paediatric ≥ 10kg

Preset:

Mode:	IPPV AutoFlow	(=Volume-Targeted Assist-Control)
PEEP:	10	mbar
Rate:	15-20	breaths/min
FiO ₂ :	100	%
Flow Sensitivity	1	L/min
Tinsp	1.0 – 1.5	S
Ramp	0.2	S
Tidal Volume	6ml/kg ideal mass for	height (Female ≈400ml Male ≈500ml)

Connect patient.

Observe measured Pmax. If Pmax exceeds 30mbar, increase Tinsp to maximum 2s. If still exceeding 30mbar, reduce set Tidal Volume by 50ml.

If measured Tidal Volume significantly below set Tidal Volume, check for leaks.

For first hour: review every 10minutes

If SpO₂ \ge 95% reduce FiO₂ by 10% until FiO₂ = 40% | Increase FiO₂ by 10% if SpO₂ <90% Review Pmax and Tidal Volume, target Tinsp 1.0 to 1.5s If regular patient triggers, can reduce Rate to 10 breaths / minute. Consider ABG after 1hour. Review SpO₂, Tidal Volume, Pmax and patient effort 1-hourly thereafter.

Once captured

First hour

- Take away excess

 FiO₂ ... if SpO₂ ≥ 95%... only need 90%
 Pressure ... if V_T high
- First hour dynamic

 many changes likely
 reassess q10min

Once stabilized

- Encourage spontaneous respiration
 - in 90% of patients
 - $_{\circ}$ diaphragm moving \rightarrow basal recruitment
 - Reduce sedation
 - Reduce set rate
 - ASSIST-Control ... patient-triggered breaths

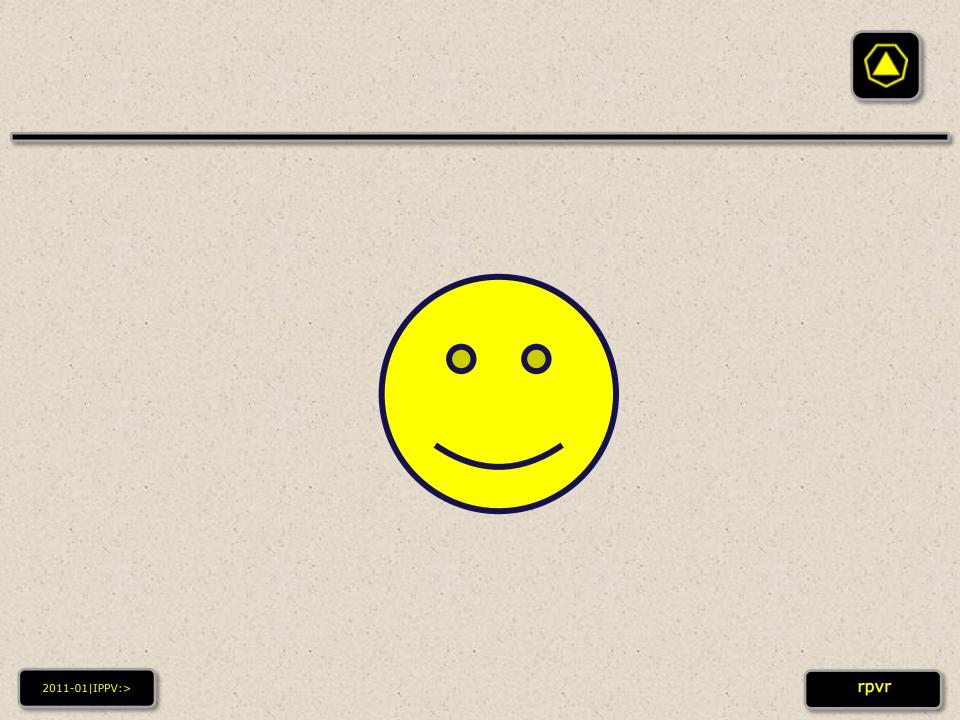
Over time

- Continuous reduction : remove un-needed
- Wean toward a SUPPORT mode
- As lungs improve...
 reduce inspiratory pressures
 give patient full control
 - wean PEEP last
- T-piece trial usually unnecessary

Pietermaritzburg Metropolitan Department of Anaesthesia, Critical Care & Pain Management "THE PMB WAY"

Pre-extubation checklist.

All parameters should be met prior to attempting extubation.


- [] Original cause(s) Respiratory Failure fixed
- [] Oxygenation Index <5 (unless chronic lung disease confirmed)
- [] No mandatory breaths required
- [] RSBI (on PS 6cmH2O) < 80
- [] Minimal / thin, clearable secretions
- [] Adequate cough
- [] Can protect airway: GCS > 9 | No local anatomical complications

Occasional exception

- Extreme lung pathology | Deranged CNS
 Obsolete ventilator
- Keep deeply sedated.
- Keep on Assist-Control mode.
- Meet lung-protective targets
- Once daily: sedation hold
 - T-piece trial (15 mins)
 - $_{\circ}$ Pass → extubate | Fail → resedate for 24h

 \rightarrow

Summary

- Target = oxygenate
 - Adequate SaO₂ to sustain life
- Protect lungs
- Hit target exact method less important
- Get control
- Continual reassessment, adjustment
- Reduce intervention as patient improves
- Patient focus

Thanks to HRH!

Questions?

2011-01|IPPV:>