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Introduction

Motivation & Problem Statement

There iIs a desire to continuously improve gas turbine
performance, by increasing thrust: this can be achieved by
Increasing gas working temperature. But:-

= high non-uniform temperatures put pressure on materials &
blade cooling technologies

= high non-uniform temperatures cause varying thermal stresses
on turbine blades

= current design methods do not fully address the problem of
non-uniform temperatures:



Introduction

» The research was based on an Experimental Combustor

» Role of Combustor
» Dilution holes
» Secondary holes

» Primary holes

» Swirler Section of a can type combustor considered



Introduction

» Combustor exit temperature profile
» Current design methods
» Empirical: Lefebvre & Norster (1969), Lefebvre (1998)
Holdeman et al (1997)
= Parametric (CFD based): Gulati et al (1994)
& Tangarila et al (2000)
» Mathematical optimisation: Rogero (2002)
& Catalano et al (2002)

Current design methods do not fully address the
problem of non-uniform temperatures: Therefore,
there iIs need for better design methods



ODbjectives

As current design methods do not fully address the
problem of non-uniform temperatures: Therefore, there 1s

need for better design methods:

» Design a methodology for design optimisation of
combustor exit temperature profile
» Apply the methodology to optimise a the temperature

profile of a research combustor.



Computational Fluid Dynamics Modelling

»Numerical technique to solve the fluid behaviour in and
around engineering equipment

» Commercial CFD package — Fluent was used
» Use the Finite Volume Method to solve the partial
differential equations of mass, momentum and energy
conservation
» Turbulence models account for small fluctuations in flow
filed
» Boussinesq approximation account for buoyancy forces
»DPM (Lagrangian) model used to model injections
»Non-premixed (PDF model) with equilibrium chemistry



Validation of CFD Models

» Comparing CFD model predictions with measurements for suitable
test case (Berl combustor)
» Commercial CFD package — Fluent was used
» Different turbulence models were assessed for their accuracy in
calculating turbulent reacting flows in a combustor
» Two-dimension of the burner
» Results
» Axial Velocity (at radial position 27mm, 109mm and 343mm)

» Temperature (at radial position 27mm, 109mm and 343mm)

> Conclusions

» Results discrepancies



Validation of CFD Models | <
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+ annular inlet
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Validation of CFD Models

Axial Velocity (m/s)
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Validation of CFD Models

Axial Velocity (m/s
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Validation of CFD Models

Axial Velocity (m/s)
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Validation of CFD Models
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Validation of CFD Models

Static Temperature (K)
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Validation of CFD Models

Static Temperature (K)
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Validation of CFD Models |< ‘

» Conclusions
» The agreements between CFD predictions and measurements are
satisfactory (when considering model limitations)
» Similar differences have been reported by other researchers

[34,40,47]

» The turbulence models investigated have varying strengths
» Globally, it 1s possible to conclude that the models are of
adequate accuracy and robust enough in the simulation of diffusion

flames to be used for design optimisation study.



Mathematical Optimisation

» Standard Non-Linear Optimisation Problem:
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Mathematical Optimisation

»Dynamic-Q Method of Snyman

» Dynamic Trajectory Method (LFOP)
» Successive Quadratic Subproblems (see figure)

» Penalty Function Formulation
» Requires Only Gradient Information
» Advantages

- Robust
- Economical

|«



Mathematical Optimisation | < ‘

Dynamic-Q-Quadratic subproblems
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Dynamic-Q-Quadratic subproblems - cont..
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Flow chart of Optimisation run
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Non-Optimised Combustor Numerical Flow Fields
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Non-Optimised Combustor Flow Fields - cont..
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s Jriginal temperature profile

T arget temperature profile

Optimisation Problem Definition
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» The two profiles differ in
shape

» The Objective is to achieve a
uniform combustor temperature
profile

» This was achieved by
minimising the shaded area
between the two profiles

temp: can also be derived from
a simple thermodynamic
relationship

» The shaded area in the figure
was derived by Trapezoidal rule




Formulation of Optimisation problem »‘

» Objective function, f(X): obtain a flatter (uniform) combustor exit

temperature profile that closely matches the target profile.
» The objective is not analytical equation but an approximated
value derived by a numerical integration procedure

» Design variables
»Process variables (flow rates and temperature)

»Geometric variables (geometric that affect temperature profile)
(Dilution holes, secondary holes, primary holes and swirler angle)

»Design constraints
» Inequality constraint: pressure drop

» Equality constraint: constant mass-flow though the all the inlets



Formulation of Optimisation problem — cont...

Primary hole

Chatlet plane

Tilution hole

secondary hole

Combustor design variables




Case Studies

»Case 1 (two design variables)
Minimise f(X) = shaded area
such that: x, an integer, x, € R
The limits are 2 <x, <7and 4 <x, <8
Where x; = number of dilution holes and x, = diameter of dilution

holes
» Results for Case 1




Results for case 1

» Optimised combustor exit temperature profile (see figure)

» Optimisation history of the objective function (see figure)

»Optimisation history of design variables (see figure)

» Temperature contours on the centre plane of the combustor (see
figure

» In this unconstraint optimisation case, pressure drop increased
by 37%, but pattern factor improved from 0.5 to 0.36, indicating

good mixing

Therefore, case 2 considered a situation where a constraint
was imposed on pressure drop.



Case 2: four design variables
Minimise f(X) = shaded area

such that: g, =hp—160 20 (inequality constraint)

By =xx, —371.5=0(equality constraint)

gj.z—}fj-+x?h5[], ..-'i;=1=2 ..... 4
g, =-x,- 2% 20, j=12 4

whets x?m aid] x?m denote the upper and lower litnits on the vatiation of variables




Case 2: four design variables — cont...

In addition move limits ( see table) are also imposed
Here x,, X, are integers, and X, X, €R

H] 2 #3 H4
Initial values 2.5 6 3 6
Maove limmits 0.4 2 2 ]

Perturbations sizes 0.2 ] 1 0.4
Lower limnit 1.9 3 2 4
Upper limit 39 | 10 7 8

Optimisation parameters for case 2




Results for case 2

» Optimised combustor exit temperature profile (see figure)

» Optimisation history of the objective function (see figure)

» Optimisation history of inequality constraint (see figure)

» Optimisation history of design variables (see figure)

» Temperature contours on the centre plane of the combustor
(see figure)

»In this constrained optimisation, pattern factor increased
from 0.5 to 0.42



Case 3: four design variables

Minimise f(X) = shaded area

such that: g, =Mp — 16020 (nequality constraint)

EJ-:_IJ'+I?EE[:]= ”.?':1,2,...,5
EJ'+E:_IJ'_I?E{E[:]’ j=1,2,...,5

whets x?m aid] x?m denote the upper and lower litnits on the vatiation of variables

Here x,, X, are integers, and X,, X,, Xs € R

X, 1s the diameter of primary holes,
X, 18 the number of primary holes
X518 the number of dilution holes
X, 1s the diameter of dilution holes
X5 18 the swirler angle.



Optimisation parameters for Case 3

In addition move limits ( see table) are also imposed
Here x,, X, are integers, and x,, X,, X € R

by | f‘fz X3 X4 Xz

Initial values i3] 3 5 i | 45
Move limits 04 | 2 : 1 05
Perturbation sizes 02| 1 1 04 1 1 |
Lower limnit 23| 2 2 4 45
Upper Lt 291 B T i ik




Results for case 3

» Optimised combustor exit temperature profile (see figure)

» Optimisation history of the objective function (see figure)

» Optimisation history of inequality constraint (see figure)

» Optimisation history of design variables (see figure)

» Temperature contours on the centre plane of the combustor
(see figure)

» Swirl velocity at 30mm from the dome face for case 3

» Axial velocity at 30mm from the dome face for case 3

» Temperature contours for optimised case 3 on the symmetrical plane

»In this constrained optimisation, pattern factor increased from
0.5 to 0.55, but pressure drop improved, because of imposed
constraint



CONCLUSIONS
= CFD and mathematical optimisation were
successfully combined to optimise combustor exit
temperature profile
= A more uniform combustor exit temperature
profile with improved pattern factor was achieved
with two design variables (case 1), but pressure
drop increasing
=A more uniform combustor exit temperature
profile with improved pressure drop and pattern
factor was achieved with four design variables



CONCLUSIONS
=A more uniform combustor exit temperature

profile with improved pressure drop was achieved
with five design variables, but pattern factor
Increased a little

Basing on our findings, combing CFD and a
mathematical optimiser can be considered a
supporting tool for gas turbine design, by which
better designs can be achieved.



Future Work

» Improvements of simulation capabilities
» Further development of optimisation capability
» Extension of design optimisation process
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Boundary conditions

Rake

Primary hole

Ontlet plane
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Swirler

Boundary conditions of the combustor




Optimised combustor exit temperature profile
for case 1

Target exit temperature profile
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Optimisation history of the objective function for case 1
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Optimisation history of design variables for case 1
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Temperature contours on the centre plane and exit
of the combustor for case 1

Colour Map Non-optimised case
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Optimised combustor exit temperature profile for case 2
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Optimisation history of the objective function for case 2
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Optimisation history of the design variables for case 2
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Optimisation history of constraints for case 2
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Temperature (K) contours (exit plane) for non-optimised
and optimised for case 2
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Optimised combustor exit temperature profile for case 3
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Optimisation history of the objective function for case 3
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Figure 17. Optimisation history of the objective function

for Case 2




Optimisation history of inequality constraint function for case 3
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Optimisation history of design variables for case 3
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Temperature contours of the combustor exit plane for case 3
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Swirl velocity at 30mm from the dome face for case 3

—a— Optimised

—a— Non-optimised

7
6 -
m¥y Sl
% I:A - > 7 - A:I
E a A u 4 - A .
§ A - - A
g A - 3 4 - A
E AA .AAA AAA- AA
N AAI A 2 A IAA
[ A A [
I. ) S N -I
a -. A.-
- T T T O.'I'. T T T ﬁ'
-40 -30 -20 -10 0 10 20 30 40

Radial position (mm)




Axial velocity at 30mm from the dome face for case 3
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Non-optimised and optimised temperature contours for case
3 on the symmetrical plane
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