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Brace yourself
Chemical process control simulation with stochastic events

by Carl Sandrock

The problem seems deceptively 

simple:  You are at a cocktail party.  

Try to stay upright and walk from 

the door to the dessert table while 

people are pushing you from all sides. 

The human brain is such an advanced 

computational tool that few people 

have given thought to the calculations 

required to complete such a task. 

In chemical processes, variables 

have limits (staying upright), target 

values (the table) and unexpected 

disturbances (people jostling for 

position) in addition to free variables 

(the placement of your arms or 

direction of your shoulders).  Process 

control can be summarised as the 

science of reaching the target while 

staying within limits in the face of 

disturbances.

Process control has come a long way 
since the first controllers were used 
to regulate water clocks more than 
2000 years ago, but really boomed 
with the advent of digital computers. 
Suddenly it was no longer required that 
the control laws be implemented in 
analogue hardware, opening up a vast 
new field by incorporating a model of 
the process in the controller. Before 
widespread use of computers, control 
engineers would design controllers ‘once 
off’ using mathematical manipulation, 
and the structure of the controller was 
fixed as it was installed. Nowadays, all 
aspects of industrial controllers can 
be changed with minimal impact to 
the system. Even so, modern control 
systems are usually based on so-called 
‘linear’ models, basically a simplification 
of the complexity of realistic models 
that reduces the computational effort 
involved in solving the control equations. 
In addition, control systems are largely 
‘reactive’ in that they react to measured 
events only after they have happened.

Picture yourself back at the party. Once 
you have reached the table, you may 
find yourself leaning back slightly to 
compensate for the effect of people 
pushing up behind you. This positioning 
of your free variables makes you more 
resistant to disturbances. What is 
required to allow a control system to 
emulate this bracing behaviour and how 
do we evaluate the effects of such a 
strategy?

Firstly we require a method of simulating 
realistic inputs into the system – you 
need to know that a push is more likely 
to come from behind you than from 
the table. On a chemical process plant, 
problems are usually due to identifiable 
events. The identification of events 
in past input signals can give us clues 
about how they are distributed in time 
and we can use Markov processes to 
generate a similar series of events. 
This in itself is not a simple problem, 
as process data usually contains much 
noise, and the highly interactive nature 
of modern plants makes it difficult to 
identify which input led to the failure. 
Let us imagine for a moment, however, 
that we have a single input with already 
idenfified events. The Markov chain is 
simply represented as a directed graph 

containing states at the nodes as shown 
in Figure 1. One starts at some initial 
state and at each evaluation step one 
moves to the next state with a certain 
probability which can be represented 
as a matrix with rows and columns for 
every state.

 1. Describing variable events using 
Markov Chains and level (L), rising (R) 
and falling (F) elements.

Next we need a good model of the 
system in question and a method of 
simulating the system’s response to 
inputs over time. Much research has 
gone into such systems, but no freely 
available dynamic chemical process 
simulator exists that can accept 
stochastic inputs and model their 
effects on both inside and outside the 
controller. By combining aspects of the 
current state of the art hybrid simulators, 
and introducing novel interaction 
between the controller and the model, 
systems can be simulated that are not 
only stochastic, but “aware” of their 
nature. We can use the simulator to do 
many runs of the same process with 
random changes obeying the original 
distributions in a Monte Carlo simulation. 
These runs can then be analysed to 
find the statistical properties (like the 
average or most likely value) of any 
variable. This only makes sense when the 
results are presented in an intelligible 
way, so we need methods of visualising 
these distributions. The results from the 
simulation are then used in a control 
algorithm that uses the statistical 
properties as inputs. In this way, the 
controller can position the system to be 
resistant to a likely disturbance or more 
amenable to a likely command.

A framework combining all these 
elements (event identification, 
stochastic hybrid simulation and 
result visualisation) is currently being 
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developed. While still a work in progress, 
some interesting insights can already 
be gleaned from the results obtained 
modelling simple systems. As a simple 
example – simpler than our earlier 
cocktail party analogy – consider the 
cart shown in Figure 2. A pendulum is 
mounted on the cart, which can move 
from left to right. The goal is to move 
from one place to another without 
dropping the pendulum.

 2. The cart problem is a classic control 
problem

Let us consider the response of the 
system to a gusty wind that changes 
direction every so often. In Figures 3 
and 4, the angle of the pendulum is 
shown when it is started at a zero angle 
(pointing straight up) and then moves 
due to the gusty wind. For Figure 3, the 
wind is more likely to blow from the left, 
while in Figure 4 it is more likely to blow 
from the right.

We can see the difference between 
these cases clearly – the pendulum is 
more likely to fall in the direction that 
the wind is blowing. Doing a simulation 
like this gives us additional information 
about what the system will be doing in 
the future, giving the controller more 
information. Simulations with controllers 
on this system shows an improvement 
in performance over traditional systems 
due to the placement of internal states.

Due to the incredible computational 
effort required to do such simulations, 
the program is currently being run on 
the University of Pretoria’s 24 node 
Velocity cluster. Even on a system like 
this one, the effort required is vast. 
To simulate the five seconds shown 
in the figures, required 10 seconds of 
computer time. That doesn’t sound so 
bad on its own, but taking into account 
that control action has to take place 

faster than once a second, it becomes 
clear that the multiple computer route 
is the only way to go. The optimisation 
of the program and simulation code is 
clearly also an important element of the 
project. However, if computer capacity 
keeps doubling every 18 months, we 
can expect simulations like this one to 
become commonplace within the next 
five years.

This system is not limited to simple 
simulations like this one – it has been 
extended to accommodate chemical 
systems including many interacting 
nonlinear components. Even though it 
is still in development, there has been 

 3. System response to biased force to the left – more red colour means more likely

 4. System response to biased force to the right – more red colour means more likely

much interest from industry in the 
results of the simulations, as several 
industries have inputs that are not well 
characterised by a constant input at a 
given time, but could be any of a range 
of values. The combination of event 
detection, stochastic simulation and 
control based on statistic properties of 
future values makes this project unique, 
but this also means that there are 
interesting times ahead. We are waiting 
to see what will emerge in the future.  
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