Validated leaf spring suspension models

PhD Public defence

Cor-Jacques Kat

10 February 2012

FACULTY OF ENGINEERING, THE BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY (EBIT)

Opportunity... Support...

Introduction | Problem statement | Literature study

Conclusions and Recommendations

Introduction

Introduction

Problem statement

Experimental characterisation

Six component load cell

Experimental characteristics

Spring only setup

Rear 6clc

Leaf spring models

- Beam theory
- Analytical/empirical models
- Equivalent models
- Discrete methods (or Finite segment method)
- Finite element methods
- Neural network models
- Lumped mass spring models
- Graphical techniques
- Kinematic models

Elasto-plastic leaf spring model

(c)

Mechanisms: materials vs. multi-leaf springs

(a) Vertical load 677kg

(b) Vertical load 4105kg

Mechanical properties

k

 k_{UL}

 f_y

- stiffness of the layered beam during loading,
 - stiffness of the layered beam during unloading,
- yield fraction

EPLS model formulation

Advantages & Disadvantages

Validation results

EPLS model conclusions

- Parameterisation
- Accurate
- Applied to parabolic leaf spring
- Application to simply supported leaf spring

Method to account for loaded length changes

$$v = -\frac{Pbx}{6LEI}(L^2 - b^2 - x^2) \qquad (0 \le x \le a)$$

It can easily be shown that

$$k_{2} = k_{1} \frac{b_{1}a_{1}L_{2}(b_{1}^{2} + a_{1}^{2} - L_{1}^{2})}{b_{2}a_{2}L_{1}(b_{2}^{2} + a_{2}^{2} - L_{2}^{2})}$$

Neural networks

Artificial neural networks

Creating ANN

- Find the *relevant inputs*
- Collect *data* necessary for training and testing of the neural network
- *Training* of the network
- Find appropriate *complexity* of the network (i.e. number of layers, number of neurons)
- Assess *generalization* ability of neural network


```
Ability to generalise
```


Importance of inputs

Importance of inputs

Effect of inputs on generalisation

"Intelligence"

Multi-leaf spring suspension system model

Verification & Validation

Validation metric based on relative error

Validation metric based on relative error

- Periodic signals around zero
- Representation of agreement/disagreement

	Elastic-nonlinear model				Neural network model			
	S&G	Russell	m%RE ^m	m%RE ^s	S&G	Russell	m%RE ^m	m%RE ^s
Magnitude	2.6	2.17			-0.025	-0.021		
Phase	1.5	1.5			0.5	0.5		
Comprehensive	3.0	2.34	17.01	10	0.5	0.44	49.27	10
			P(89.37)	P(76.01)			P(51.52)	P(49.67)

	Elastic-nonlinear model				Neural network model			
	S&G	Russell	m%RE ^m	m%RE ^s	S&G	Russell	m%RE ^m	m%RE ^s
Magnitude	3.42	2.82			-0.035	-0.03		
Phase	1.32	1.32			0.59	0.59		
Comprehensive	3.66	2.76	5.62 P(55.69)	10 P(72.85)	0.59	0.53	1.2 P(67.16)	10 P(99.3)

elastic-nonlinear model = 0.2429s

neural network model = 0.0792s

Conclusions

Conclusions and Recommendations

Recommendations

Experimental characterisation

- 6clc applied force's orientation as well as its point of application.
- force-displacement characteristics continuous loaded length change of the leaf spring

EPLS mode

- Ramberg-Osgood formulation
- Investigate alternative methods for handling the friction.
- Visualization of slip planes
- Theoretical stiffness of leaf springs

Recommendations

Neural network model

• inputs effect on training data required

Quantitative validation metric

- The *m%RE* validation metric should be extended to quantify model and experimental measurement uncertainties.
- quantify the tendency of the model to over-or under predict should be investigated and incorporated into the *m%RE*

Questions/Comments

Acknowledgements

- Afrit
- The Department of trade and industry's Technology and Human Resources for Industry Programme (**THRIP**) initiative.
- Gerrit van de Wetering, for his supportive role from Afrit and for the hours he generously spent in proof reading reports and articles.
- Schalk Els, for his friendship, mentorship and his guidance throughout my studies.

Acknowledgements

- To my **mother**, for teaching me courage, determination and perseverance.
- To my grandfather, for teaching me integrity and to be just.
- To my brother **Tjaart**, for teaching me loyalty.
- To my brother **Arné**, for teaching me patience.
- To my grandmother, for teaching me commitment and consideration
- To my friend **Tjaart van der Walt**, for teaching me the importance of dependability.
- To my girlfriend **Somarié**, for strengthening my believes and principles

I can do everything through Him who gives me strength Philippians 4:13