The application of Eulerian laser Doppler vibrometry to the on-line condition monitoring of axial-flow turbomachinery blades

by
Abrie Oberholster

Supervisor: Professor Stephan Heyns

01 July 2010
Scope

• Problem statement

• Eulerian laser Doppler vibrometry
 – Analytical and numerical study
 – Experimental verification

• Single-blade axial-flow rotor tests
 – Signal processing
 • Phase angle trends
 • Non-harmonic Fourier analysis
Scope

- Multi-blade rotor tests
 - Data processing
 - Artificial neural network implementation

- Conclusions

- Further work
Problem statement

• Turbomachines are critical to most industrial processes

• Power generation
 – Steam turbines
 – Forced and induced draft fans
 – Air Cooled Condenser (ACC) fans

• Blade health is of the utmost importance

• Frequent off-line inspection of blades not possible

• Online condition monitoring
On-line blade vibration measurement approaches

- Contact techniques
 - Strain gauge measurements
 - Good quality data (high SNRs)
 - High frequency resolution
 - Limited sensor lifespan

- Non-contact techniques
 - Blade tip Time-Of-Arrival
 - Infer blade vibration behaviour from pulses
 - Requires large amount of sensors for useful bandwidth
On-line blade vibration measurement approaches

• Non-contact techniques (*continued*)
 – Laser Doppler vibrometry
 • Large stand-off distance (up to 100m)
 • Large measurement bandwidth (0 to 24 MHz)
 • Large dynamic range (50 nm/s to 30 m/s)

• Direct blade vibration measurement
• Circumferential or axial
• Fixed (Eulerian) or moving (Lagrangian) reference frame
Laser Doppler Vibrometry: Measurement principle
Measurement approaches

- Lagrangian
 - Moving reference frame
 - Tracking laser vibrometry
 - Scanning laser vibrometer
 - Mirrors controlled to follow specific point on blade
 - Not industrially feasible

- Eulerian
 - Fixed reference frame
 - Laser beam is focused at fixed spatial point
 - Blades sweep through laser beam
 - Very short signals (max. 1/BPF)
 - Speckle noise
Eulerian Laser Doppler Vibrometry (ELDV): Analytical study

- Stationary LDV
- Moving cantilever beam
- Euler-Bernoulli formulation:
 - Lagrangian
 \[v_L(x_L,t) = \frac{\partial w_L(x_L,t)}{\partial t} = \sum_{j=1}^{\infty} W_j(x_L) \cdot \frac{dq_j(t)}{dt} \]
 - Eulerian
 \[x_E = ct \]
 \[v_E(c,t) = \sum_{j=1}^{\infty} W_j(ct) \frac{d}{dt} q_j(t) \quad \text{for} \quad 0 \leq t \leq \frac{l}{c} \]

Amplitude modulation
ODS via demodulation
ELDV numerical simulation

- Select c and f_s

- Consider Lagrangian vibration responses at $N = \left\lfloor \frac{L}{(c \cdot \Delta t)} \right\rfloor$ equi-spaced measurement positions over the entire beam length:

$$x_L = \left\{ x_{L1}, x_{L2}, \ldots, x_{L(N-1)}, x_{LN} \right\}$$

at N discrete time instants:

$$T = \left\{ t_1, t_2, \ldots, t_{N-1}, t_N \right\}$$

- Obtain ELDV for c by incrementing the measurement position with each time step
ELDV numerical simulation

\[L = 112.5 \text{ mm} \]
\[c = 46.16 \text{ m/s} \]
\[f_s = 20 \text{ kHz} \]

\[\Rightarrow N = 48 \]
ELDV numerical simulation

$k = 1$

Lagrangian Vibration Response Matrix
ELDV numerical simulation

Lagrangian Vibration Response Matrix

$k = 1$

$k = 2$
ELDV numerical simulation

\[k = 1 \]
\[k = 2 \]
\[k = 3 \]

Lagrangian Vibration Response Matrix
ELDV numerical simulation

- Non-integer k: Calculate new Lagrangian response matrix for each new value

- Computationally expensive

- Two dimensional interpolation
 - Spatial & time domain

- Higher values of k reduces error

- Lagrangian matrix resolution
ELDV experimental study

- Draw wire unit
- Cantilever beam
- Chassis
- VibroPet electrodynamic shaker
- Forces transducer
- Rails
ELDV experimental study

- $c = 0.54 \text{ m/s}$
- Sinusoidal excitation
 - ODS extraction
 - Speckle noise
- White noise excitation
 - FRF peaks visible
 - ODS extraction
Single-blade test rotor

- Eliminate multi-blade phenomena
 - Global mode shapes
 - Mistuning
- Air-jet excitation
- Air-jet back pressure
- Shaft encoder
- Simulated damage
 - 1 mm wide slot
 - 0 mm to 16 mm
Single-blade rotor

- 720 RPM (12 Hz)
 - ELDV
 - 1.8 ms
 - $\Delta f = 540$ Hz
 - TLDV
 - 38.1 ms
 - $\Delta f = 26$ Hz

- Amplitude & phase angle changes
 - Systematic
 - Abrupt
Non-Harmonic Fourier Analysis (NHFA)

<table>
<thead>
<tr>
<th>NHFA</th>
<th>HFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H(m, \omega) = a(\omega) \times C(m, \omega) + b(\omega) \times S(m, \omega)$</td>
<td>$y(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t)$</td>
</tr>
</tbody>
</table>

- $\omega_0 = \frac{2\pi}{\tau}$

Calculations

<table>
<thead>
<tr>
<th>$a(\omega)$</th>
<th>$a_n = \frac{2}{\tau} \int_{-\tau/2}^{\tau/2} y(t) \cos n\omega_0 t , dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b(\omega)$</td>
<td>$b_n = \frac{2}{\tau} \int_{-\tau/2}^{\tau/2} y(t) \sin n\omega_0 t , dt$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$y(t) = \cos(\omega t + \phi)$</th>
<th>$a(\omega) = \cos \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b(\omega) = -\sin \phi$</td>
<td>$y(t) = \cos(k\omega_0 t + \phi)$</td>
</tr>
<tr>
<td>$a_k = \cos \phi$</td>
<td>$b_k = -\sin \phi$</td>
</tr>
</tbody>
</table>
\[y(t) = \cos \left(\left(\omega_{\text{ref}} + \Delta \omega \right) t + \phi \right) \]

\[a(\omega_{\text{ref}}) = \left(\frac{2 \omega_{\text{ref}}}{\omega_{\text{ref}} t + \sin \omega t} \right) \left[\frac{\sin \left(\Delta \omega \tau / 2 \right)}{\Delta \omega} + \frac{\sin \left(2 \omega_{\text{ref}} + \Delta \omega \right) \tau / 2}{2 \omega_{\text{ref}} + \Delta \omega} \right] \cos \left[\phi + \left(\omega_{\text{ref}} + \Delta \omega \right) \tau / 2 \right] \]

\[b(\omega_{\text{ref}}) = -\left(\frac{2 \omega_{\text{ref}}}{\omega_{\text{ref}} t - \sin \omega t} \right) \left[\frac{\sin \left(\Delta \omega \tau / 2 \right)}{\Delta \omega} - \frac{\sin \left(2 \omega_{\text{ref}} + \Delta \omega \right) \tau / 2}{2 \omega_{\text{ref}} + \Delta \omega} \right] \sin \left[\phi + \left(\omega_{\text{ref}} + \Delta \omega \right) \tau / 2 \right] \]

- Phase shift
- Frequency shift
- Can be exploited for condition monitoring
Finite Element Model (FEM)

- Validate experimental measurements
- FRF-based model updating
 - Node resolution
- ELDV simulation
- Damage simulation
 - Element deletion
 - Validation
Unwrapped Phase Angle (UPA) trends

[Graph showing phase angle shift against damage level]
UPA trend sensitivity analysis

Experimental:
Maximum Absolute UPA Trend (MAUPAT)
Multi-blade rotor

- 5-blade rotor

- Multi-blade phenomena
 - Global mode shapes
 - Erroneous damage detection
 - Damage “masking”
 - Blade mistuning
 - Blade clamping
 - Epoxy
 - Clamp bolt torque
 - Blade spacing
 - Harmonics
Multi-blade rotor

- Test at various rotor speeds
 - 720, 960, 1200, 1440 RPM

- Multiple blade damage scenarios

- Two ELDV measurement positions
 - Forced
 - Free
FEM

- Solid elements
- Scan node reduction
- FRF-based model updating
- Excitation
TLDV comparison

Measured @ 1200 RPM

Simulated @ 1200 RPM

Measured @ 1440 RPM

Simulated @ 1440 RPM
Phase and amplitude irregularities

- FEM TLDV
- RMS values
- Blade 1st bending mode natural frequency
- Natural frequency coincides with rotor speed order
- RMS useful as a damage indicator
MAUPAT around f_1
σ_{MAUPAT} around f_1
Average σ_{MAUPAT}
Average σ_{MAUPAT}: Multiple blade damage
Artificial Neural Network implementation

![Diagram showing various graphs for different RPMs and damage cases](image)

- **Damage level, D_b**
- **720 RPM**
- **960 RPM**
- **1200 RPM**
- **1440 RPM**

Legend:
- Blade #1
- Blade #2
- Blade #3
- Blade #4
- Blade #5
ELDV natural frequency information

- Run-down and run-up signatures
- Blade natural frequency coincides with rotor order
- RMS peaks
ELDV natural frequency estimation

<table>
<thead>
<tr>
<th>Blade #</th>
<th>FRF frequency [Hz]</th>
<th>Estimated frequency [Hz]</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>106.25</td>
<td>109.48</td>
<td>3.04</td>
</tr>
<tr>
<td>2</td>
<td>137.5</td>
<td>138.11</td>
<td>0.44</td>
</tr>
<tr>
<td>3</td>
<td>103.125</td>
<td>105.04</td>
<td>1.89</td>
</tr>
<tr>
<td>4</td>
<td>137.5</td>
<td>138.34</td>
<td>0.61</td>
</tr>
<tr>
<td>5</td>
<td>109.375</td>
<td>111.64</td>
<td>2.07</td>
</tr>
</tbody>
</table>
Conclusions

• ELDV is a feasible on-line rotor blade condition monitoring tool

• NHFA provides health deterioration indicators
 – MAUPAT
 – RMS, Correlation coefficient
 – Neural network implementation

• Multiple ELDV measurement positions are advantageous

• Blade natural frequencies can be estimated from rotor run-down and run-up events
Further work

- Industrial testing
 - Operating variables
 - Reflectivity
 - Increased laser beam power
 - Safety
 - Phased-based microwave sensors
 - Beam dispersion (spatial averaging)

- Effect of actual cracks
 - Nonlinear stiffness

- Rotors with high blade numbers
Acknowledgements

• Heavenly Father

• Prof. Stephan Heyns (University of Pretoria)

• Mark Newby (Eskom Sustainability & Innovation)

• Friends & family
Questions

Thank you!