Design and Analysis of a Practical Large-Force Piezoelectric Inchworm Motor with a Novel Force Duplicator

M.Eng Dissertation – EF Williams Submitted to University of Pretoria Department of Mechanical and Aeronautical Engineering

Edward Williams^{1,2}, Nico Theron¹, Philip Loveday²

¹ Department of Mechanical and Aeronautical Engineering, University of Pretoria, South-Africa

²Material, Science and Manufacturing, Council for Science and Industrial Research, South-Africa

19 February 2014

Presentation Outline

- About Piezoelectrical materials
- Piezoelectrical Behaviour
- Piezoelectrical Actuators
- Introduction to Inchworm motors
- Load limit of an Inchworm motor
- Testing of the Inchworm motor
- Conclusion

..... but first, what is an Piezoelectrical Inchworm motor?

An Inchworm motor

About Piezoelectrical Materials

Typical deformation of a piezoelectric material

Electrical design of a stack actuator

(Physikinstrumente," 2011)

Piezoelectrical Behaviour

 $S = s^{E} \cdot T + d' \cdot E$ $D = d \cdot T + \varepsilon^{T} \cdot E$ (Meeker, T. R. (1996). IEEE Standard on Piezoelectricity) $S_{3} = s_{33}^{E} \cdot T_{3} + d_{33} \cdot E_{3}$ $S_{3} = \frac{\delta}{L} \qquad E_{3} = \frac{V_{out}}{L} \qquad T_{3} = \frac{F}{area}$ $\delta = \frac{s_{33}^{E} \cdot L}{area} \cdot F + d_{33} \cdot V$ $\delta = a \cdot F + b \cdot V$

a is the compliance b is the ration between δ and V when F is constant

$$F = k_p \cdot \delta - k_p \cdot b \cdot V$$
$$F_b = k_p \cdot b \cdot V$$
$$F_{ext} = F_b - k_p \cdot \delta$$

Piezoelectrical Behaviour

$$F_{ext} = F_b - k_p \cdot \delta$$

Giurgiutiu, V., & Rogers, C. A. (1997). Power and Energy Characteristics of Solid-State Induced-Strain Actuators for Static and Dynamic Applications. Journal of Intelligent Material Systems and Structures, 8(9), 738–750.

About Piezoelectrical Actuators

Piezo actuators offer some unique advantages:

- Sub-micrometre resolution.
- Large force generation (high force density).
- Sub-millisecond response.
- No magnetic fields.
- Extremely low steady state power consumption.
- No wear and tear.
- Vacuum and clean room compatibility.
- Holding function without significant power consumption.

There are also some disadvantages:

- Highly nonlinear input/output behaviour -Hysteresis.
- Very small motion range.
- Relatively complex electronic controllers are required.

Speed and force characteristics of piezo motors. (Spanner, K., & Koc, B. (2010). An Overview of Piezoelectric Motors. 12th International Conference on New Actuators)

Piezoelectrical Actuators

- Example of a piezoelectrical actuator

A flextensional or Moonie actuator

(Newnham, R. E., Dogan, a., Xu, Q. C., Onitsuka, K., Tressler, J., & Yoshikawa, S. (1993). Flextensional "moonie" actuators. Proceedings of IEEE Ultrasonics Symposium.)

Blocked force	160.9 N
Free displacement	231 µm
Maximum stress (free displacement)	233 MPa
Maximum stress (blocked)	559 MPa
Stiffness in actuating direction	694.4 N/mm
Amplification (mechanical)	4.278

Introduction to Inchworm motors - The basic idea

- The high force density and good dynamic properties of piezoelectric material makes it an attractive technology for actuator applications....
- but its very small displacement limits its usefulness. To increase the displacement, mechanical amplification may be used by attaching a lever to a piezoelectric actuator.....
-this, however, reduces the force capability.
- Another possibility is to use so-called *Frequency Levering* where an actuator is driven dynamically at a high frequency, and displacement per cycle is added over many repetitions without compromising on the force capability.

Piezoelectric stacks

Introduction to Inchworm motors - The operational principle

Basically, an IWM is three actuators working together. <u>Two</u> of the actuators act as <u>clamps</u>, and the third is an <u>extender mechanism</u> that produces _{clamp B} the linear (or rotational) displacement.

A single operational cycle consists of six steps:

- 1. Clamp A is activated while clamp B is disengaged.
- 2. The extender extends.
- 3. Clamp B is activated. Both clamps are now on.
- 4. Clamp A relaxes.
- 5. The extender relaxes / returns to its original shape.
- 6. Clamp A is engaged.

Introduction to Inchworm motors - Control signals

Introduction to Inchworm motors - Application

- Piezoelectrical IWM's are well suited to applications requiring moving a relative large load accurately.
- An IWM can hold a large load in position without consuming significant power.
- An IWM can be designed to hold a load in a poweroff mode, i.e fail-to-safety.
- An IWM using a switch mode power supply, can be used for energy scares application.

Application examples:

- 1. A Morphing wing on a UAV.
- 2. Focus adjustment of a heavy optical element.
- Manipulating a work piece during machining operations XY table.

Introduction to Inchworm motors - The conventional IWM design

A piezoelectric Inchworm motor accumulates a number of small displacements to obtain large linear displacement without compromising on the force ability.

Introduction to Inchworm motors

- The IWM design with force duplicator mechanism

(E. F. Williams and P. W. Loveday, "PIEZOELECTRIC ACTUATION DEVICE," WO/2013/0728112013.)

Introduction to Inchworm motors

- The IWM design with force duplicator mechanism

Finite element analysis showing the exaggerated action of the extender and lever mechanism.

Load limit of an IWM - Altering load paths

Steps	Conventional IWM	IWM with force duplicator	Snap shot from graph	
START		A [△] B _▽		Start position
1				Clamp A is activated, while clamp B is disengaged. Load results in displacement due to compliance.
2				The extender extends.
3				Clamp B is activated
4				Clamp A relaxes. Load is transferred to 2 nd load path. Extender displaces due to compliance
5				The extender returns to its original shape
6				Clamp A is engaged. A step against the load have been made.

Testing of the IWM

Testing of the IWM

Results for the IWM with force duplicator

	Analysis	Testing
Blocked force	103 N	
Free displacement	134 µm	144 µm
Stiffness of the extender	0.768 N/ μm	0.711 N/ μm – 0.763 N/ μm
Stall load	51.2 <i>N</i>	30.5 N

Conclusion

- A new and novel embodiment for a piezoelectric IWM utilizing a beam mechanism has been designed, built and tested.
- A simple method was derived to calculate the stall load of an IWM based on empirical observations.
- Experimental testing showed that this method gave adequate predictions of the stall limit for an IWM for both the conventional design and the IWM with the force duplicator.
- It was observed during testing that the load applied to a IWM reduces the displacement of the extender actuator used in the motor. Further research is required to irrefutably understand this interaction.

Thank you!

Contact: Eddie Williams ewilliams@csir.co.za