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ABSTRACT 

This study applies wavelet analysis to examine the relationship between the U.S. real estate 

and stock markets over the period 1890-2012. Wavelet analysis allows the simultaneous 

examination of co-movement and causality between the two markets in both the time and 

frequency domains. Our findings provide robust evidence that co-movement and causality 

vary across frequencies and evolve with time. Examining market co-movement in the time 

domain, the two markets exhibit positive co-movement over recent past decades, exception 

for 1998-2002 when a high negative co-movement emerged. In the frequency domain, the two 

markets correlate with each other mainly at low frequencies (longer term), except in the 

second half of the 1900s as well as in 1998-2002, when the two markets correlate at high 

frequencies (shorter term). In addition, we find that the causal effects between the markets in 

the frequency domain occur generally at low frequencies (longer term). In the time-domain, 

the time-varying nature of long-run causalities implies structural changes in the two markets. 

These findings provide a more complete picture of the relationship between the U.S. real 

estate and stock markets over time and frequency, offering important implications for 

policymakers and practitioners.  
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1. Introduction 

This paper provides some fresh insights on the links between the U.S. real estate and stock 

markets. In the U.S. economy, real estate and stock holdings comprise the two largest and 

principal components of wealth. Movements in their market values can dramatically affect 

the economic condition of families and business and, hence, affect the overall growth of the 

U.S. economy. Booms and busts in real estate and stock markets have always played an 

important role in U.S. business cycle history. The most recent financial crisis and Great 

Recession saw a great housing bubble burst followed by a remarkable stock market crash, 

causing the U.S. and the world economy to suffer huge financial losses. Since stocks act as 

one of the most convenient investment vehicles with low transaction cost and high liquidity 

while real estate acts as a ‘bulky’ asset with high transaction cost and low liquidity, the two 

assets typically appear in homebuyers’ and investors’ portfolios (Lin and Fuerst, 2012). The 

diversification benefits, however, hinge on the relationships between the two underlying 

markets. This paper identifies co-movements and causality in the time and frequency 

domains between these two markets in the U.S., using distinctive methods and data and 

deriving new insights and implications for investment strategies and market forecasts. 

The recent research on the relationships between real estate and stock markets falls 

into three main strands. First, researchers employ linear and non-linear cointegration 

techniques, such as Johansen, fractional, and threshold cointegration tests, to determine 

whether the two markets are integrated or segmented (Ambrose et al., 1992; Wilson and 

Okunev, 1999; Liow, 2006; Lin and Fuerst, 2012; Liow and Yang, 2005; Tsai et al., 2012). 

The identification of markets as integrated or segmented in an economy is pivotal for 

practitioners and policymakers. Market integration means that a high degree of asset 

substitution exists between real estate and equities, while market segmentation implies the 

two assets provide good risk diversifiers for each other in portfolio management (Wilson et 
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al., 1996).  

Second, researchers consider the causal links between real estate and stock markets by 

applying causality tests in vector autoregressive (VAR), vector error-correction (VEC), and 

threshold error-correction models (TECM) (Gyourko and Keim, 1992; Okunev et al., 2000; 

Sim and Chang, 2006; Su, 2011; Su et al., 2011; McMillan, 2012; Shirvani et al., 2012; Tsai 

et al., 2012). The nature and direction of causality between the two markets can aid 

policymakers and investors to forecast future performance from one market to the other 

through two transmission mechanisms (Chen, 2001; Case et al., 2005; Kapopoulos and Siokis, 

2005). One, the “wealth effect” indicates that a rise in stock prices and, hence, an unexpected 

gain in stock returns can boost real estate consumption and prices, while two, the 

“credit-price effect” suggests that a rise in real estate prices can, in turn, lead to an increase in 

stock market prices.  

Third, researchers in earlier studies concentrate on the correlation between real estate 

and stock markets through standard correlation analysis (Ibbotson and Siegel, 1984; Hartzell, 

1986; Eichholtz and Hartzell, 1996; Worzala and Vandell, 1993; Quan and Titman, 1999). 

Correlation analysis interprets co-movement between the markets, which can suggest assets 

diversification benefits for investors.  

These existing studies exclusively utilize the conventional time-domain methods, 

namely the above-mentioned cointegration techniques, causality tests, and correlation 

analysis with the exception of Liow (2012) who adopts dynamic conditional correlation 

(DCC) models to assess time-varying co-movement between the real estate and stock 

markets.
1
 That is, the existing literature typically ignore any the time-variation in the 

                                                
1 Following the extant literature, we, too, run standard linear Granger causality tests in a VAR model of the real 

rates of return for house and stock prices, which Table A1 indicates are stationary, I(0), variables. Table A2 

reports that the causality tests do not reject the null of no-causal relationship between the two variables. Further, 

we also test for cointegration between the natural logarithm of the real house and stock prices, which are 

nonstationary, I(1), variables. Table A3 shows that we cannot reject the null hypothesis of no-cointegration. 

Moreover, Table A4 reports evidence of instability of the long-run relationship estimated using fully-modified 
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relationships between the two markets. Moreover, these studies do not explore the 

frequency-variation in such relationships by these time-domain approaches. Nevertheless, the 

time- and frequency-varying features in such relationships can provide important practical 

implications for portfolio management. Time-varying co-movement implies that the risk 

exposure and diversification benefits of asset portfolios evolve over time and, thus, investors 

should incorporate such effects when evaluating the risk and returns of these portfolios. 

Frequency-varying co-movement suggests that investors with different investment horizons 

should consider the co-movement at corresponding frequencies so as to allocate their assets 

more effectively. The time- and frequency-varying features in the causality can also 

significantly affect the accuracy of market performance prediction and, hence, affect the 

investment benefits for practitioners and the regulatory benefits to policymakers. A recent 

study by Zhou (2010) stresses the importance of the time- and frequency-variation in the 

assessment of the relationship between the two markets. 

This paper utilizes a novel wavelet analysis to explore the real relationship between 

the U.S. real estate and stock markets in both the time and frequency domains. Wavelet 

analysis possesses significant advantages over conventional time-domain methods. It expands 

the underlying time series into a time-frequency space where researches can visualize both 

time- and frequency-varying information of the series in a highly intuitive way. Wavelet 

coherency and phase differences simultaneously assess how the co-movement and causalities 

between the U.S. real estate and stock markets vary across frequencies and change over time 

in a time-frequency window. In this way, we can observe high-frequency (short-term) and 

low-frequency (long-term) relationships between the two markets as well as possible 

structural changes and time-variations in such relationship. Goffe (1994) and Ramsey and 

                                                                                                                                                  
ordinary least squares method. Hence, the lack of causality does not reflect misspecification of the VAR in 

first-differences (growth rates) of the variables. Finally, Table A5 provides strong evidence of structural breaks 

in the individual equations of the VAR model, as well as the VAR model as a system, thus, invalidating the 

full-sample Granger causality result reported in Table A1. This, in turn, motivates the need for a time-varying 

approach to causality, which the wavelet analysis provides. 
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Lampart (1998a, b) introduced applications of wavelet analysis in economics and finance. 

More recent work, however, focuses on the co-movement between stock markets as well as 

between energy commodities and macroeconomy (Rua and Nunes, 2009; Graham and 

Nikkinen, 2011; Aguiar-Conraria and Soares, 2011; McCarthy and Orlov, 2012; Loh, 2013; 

etc.). To the best of our knowledge, limited work so far applies wavelet analysis to the 

relationship between real estate and stock markets with the exception of Zhou (2010) who 

assesses the co-movement between the two markets for six countries. He considers, however, 

only the co-movement between the securitized real estate and stock markets and the U.S. case 

receives partial attention, which motivates our analysis. 

This study contributes to the existing literature in several important ways. First, the 

wavelet analysis devotes special and full attention to dynamic co-movement and causalities 

between the U.S. real estate and stock markets. Second, we use the distinctive annual data of 

Robert Shiller’s housing and S&P stock returns over an extended from 1890 to 2012, which 

implies that our findings apply for practitioners and policymakers in the residential real estate 

and stock markets. Third, we employ the growth rate of GDP as a control variable to reveal 

the true relationships between the two markets by removing the effects of economic growth 

on both the real estate and stock markets performances (Quan and Titman, 1999). Fourth, we 

also estimate the partial wavelet coherency and partial phase difference as necessary 

complements to the common-used wavelet coherency and phase difference. Finally, we 

perform a simultaneous assessment of the co-movement and causal relationships between the 

two markets in the time and frequency domains.  

Our empirical results show substantial time- and frequency-varying features in the 

co-movement and causality between the U.S. real estate and stock markets. This provides 

additional and useful implications for investment strategies and the forecasts of the markets' 

performance for investors and policymakers. In addition, we identify the co-movement during 
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the recent financial crisis with the results showing that the two markets actually respond more 

to economic growth fundamentals, rather than to each other. 

This paper proceeds as follows. Section 2 briefly reviews the related literature. 

Section 3 provides an overview of wavelet theory and methods. Section 4 describes the data 

and presents the empirical results. Section 5 concludes. 

2. Literature Review 

As mentioned above, a large literature exists to identify whether real estate and stock markets 

are integrated or segmented through a variety of cointegration techniques. The results differ 

widely depending on the datasets examined and the methodology used. Liu et al. (1990) 

adopt the capital asset pricing model (CAPM) presented by Jorion and Schwartz (1986) and 

find that segmentation does exist between the U.S. real estate and stock markets because of 

indirect barriers such as the cost, amount, and quality of information on real estate. Geltner 

(1990) supports this segmentation hypothesis by documenting that the noise component of 

real estate differs from the noise component of stock returns. Ambrose et al. (1992) conclude 

on the contrary, however, that the securitized real estate market may integrate with the stock 

market, using a rescaled range analysis to test deterministic nonlinear trend in the underlying 

return series. Meyer and Webb (1993) also report a certain degree of integration between the 

two markets, noting that the returns on equity Real Estate Investment Trusts (REITs) seem 

similar to the returns on common stocks. Liow (2006) finds that the stock (including property 

stock) market integrates with the real estate market in the Singapore economy, using the 

autoregressive distributed lag (ARDL) cointegration procedure.  

Okunev and Wilson (1997) develop a fractional cointegration test, which considers a 

stochastic trend term instead of the deterministic drift term employed by Ambrose et al. 

(1992). They conclude that the U.S. real estate and stock markets are fractionally integrated. 

Following their analysis, the literature widely employs the non-linear fractional cointegration 
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test. Wilson and Okunev (1999) apply this technique to test for long-term relationship 

between the securitized real estate and stock markets for three countries, finding segmented 

markets in the U.S. and the U.K., but somewhat integrated markets in Australia. Lin and 

Fuerst (2012) apply both the fractional and Johansen’s (1988,1991) cointegration tests, 

demonstrating that the stock market linearly integrates with direct real estate market 

(securitized real estate market) in China, Japan and Thailand, but fractionally integrates in 

Singapore and Hong Kong, and remains segmented in Taiwan, Malaysia, Indonesia and South 

Korea. In an earlier study, Liow and Yang (2005) infer from the same fractional cointegration 

analysis that the securitized real estate (indirect real estate) and stock markets in Singapore 

and Hong Kong are fractionally integrated and, thus, the two underlying assets substitute over 

the long term. Additionally, Tsai et al. (2012) use the momentum-threshold autoregressive 

(M-TAR) method and find an asymmetric cointegration relationship between the U.S. 

housing and stock markets. 

A growing number of studies consider the causal link between the real estate and 

stock markets. Gyourko and Keim (1992) suggest a causal link from the U.S. stock market to 

real estate market by testing on the S&P 500 and equity REITs return series. Okunev et al. 

(2000) detect a strong unidirectional causality running from the U.S. stock market to the real 

estate market by employing nonlinear causality tests. Su (2011) conducts the non-linear 

causality tests based upon the TECM and provides evidence in favor of the credit-price effect 

in Germany, the Netherlands, and the U.K., the wealth effect in Belgium and Italy, and both 

effects in France, Spain, and Switzerland. Ibrahim (2010) confirms the wealth effect channel 

for Thailand, using standard linear Granger causality tests. Tsai et al. (2012) also perform the 

similar non-linear causality test in the context of TECM, concluding that the wealth effect 

dominates when the U.S. stock market outperforms the housing market. McMillan (2012) 

adopts another exponential smooth transition (ESTR) procedure for non-linear causality test, 
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finding a unidirectional causality running from real estate prices to stock prices in the U.S. 

and the U.K., which implies a credit-price effect across the two economies. Shirvani et al. 

(2012) report the presence of bilateral causality between the U.S. stock prices and residential 

real estate prices. Kapopoulos and Siokis (2005) support the wealth effect hypothesis for 

Athens real estate prices but not for other Greek urban real estate prices. Sim and Chang 

(2006) provide evidence that most Korean regional housing and land markets Granger cause 

stock prices in a VAR framework, which supports the credit-price hypothesis.�Bouchouicha 

(2013) constructs non-linear Markov switching models to assess the causal link between the 

real estate and stock markets in the U.S. and the U.K. with the maximum likelihood (ML) 

estimations indicating that credit-price effect is stronger than wealth effect in both countries. 

Along similar lines, Aye et al. (2013), based on nonparametric tests, find that not only does 

the real house price cointegrate with the real stock price, but also bi-directional causality 

exists between these two asset prices, even when standard linear cointegration and Granger 

causality tests fail to pick up any relationship between these two asset prices. 

In addition, from the time-domain, earlier studies investigate the correlation between 

real estate and stock markets. Ibbotson and Siegel (1984), Hartzell (1986), and Eichholtz and 

Hartzell (1996) show a negative correlation between the two markets for the U.S., the U.K., 

and Canada, whereas Worzala and Vandell (1993) find a positive correlation between the 

U.K. real estate and stock markets. Quan and Titman (1999) support the positive correlation 

between the two markets by estimating cross-sectional data from seventeen different 

countries. More recently, Liow (2012) assesses the time-varying co-movement between the 

two markets using the dynamic conditional correlation (DCC) method, but neglects the 

frequency-varying features in markets co-movement. 

While the existing literature generally adopts time-domain analysis, Zhou (2010), the 

closest study to our analysis, uses wavelet analysis to evaluate the co-movement between six 
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global securitized real estate markets –the U.S., the U.K., Japan, Australia, Hong Kong, and 

Singapore as well as the co-movement between the securitized real estate and stock markets 

of the same country. The results indicate strong co-movement across a large range of 

frequencies for Japan, Hong Kong, and Singapore, but only across a limited band of 

frequencies for the U.S., the U.K. and Australia.  

Our paper differs from Zhou (2010) by concentrating on the time- and 

frequency-varying features of both the co-movement and causalities between the U.S. real 

estate and stock markets, instead of just analyzing their co-movement. Moreover, we employ 

the annual transaction-based Shiller housing returns and S&P stock returns data from 1890 to 

2012. Lastly, we use the growth rate of GDP to control for the general economy's effect, 

attempting to extract the direct real relationships between the two markets.  

3. Wavelet Theory and Methods 

Wavelet analysis originated in the mid-1980s as an alternative to the well-known Fourier 

analysis. Though Fourier analysis can uncover how relations vary across frequencies using 

spectral techniques, the Fourier-tranform analysis discards the time-localized information. 

Moreover, Fourier analysis is merely suitable for stationary series. In contrast, wavelet 

analysis conducts the estimation of spectral characteristics of a time series as a function of 

time (Aguiar-Conraria et al., 2008). It, therefore, can extract localized information in both 

time and frequency domains. Moreover, wavelet analysis exhibits a significant advantage 

over Fourier analysis for non-stationary or locally stationary series (Roueff and Sachs, 2011).  

3.1 Continuous wavelet transform 

The wavelet transform decomposes a time series into some basis wavelets, which are 

stretched and translated versions of a given mother wavelet localized in both the time and 

frequency domains. In this way, the series expands into a time-frequency space where its 

oscillations appear in a highly intuitive way. Often, two kinds of wavelet transforms exist: 
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discrete wavelet transforms (DWT) and continuous wavelet transforms (CWT). The former 

reduces noise and compresses data whereas the latter extracts features and detects data 

self-similarities (Grinsted et al., 2004; Loh, 2013).
2
 In this paper, we choose the CWT to 

decompose the concerned series into wavelets. 

The CWT of a given time series ( )tx  is defined as a convolution type: 

( ) ( ) ( )∫
+∞

∞−
= dtttxsW sx

*

,, τψτ ,                           (1) 

where the asterisk indicates the complex conjugation and ( )ts

*

,τψ  is the complex conjugate 

function of ( )ts,τψ , namely, the basis wavelet function. As mentioned, the basis wavelet 

comes from a given mother wavelet, represented by ( )tψ  in the sense that: 

( ) 






 −
=

s

t

s
t

τ
ψψτ

1
s， ,                              (2) 

where s  is the wavelet scale that controls how the mother wavelet is stretched, and τ  is 

the location parameter that controls where the wavelet is centered. By changing the scale 

parameter ( s ) and translating along the localized time index (τ ), one can construct a picture 

showing how the amplitudes of ( )tx  vary across scale and over time (Torrence and Compo, 

1998).  

A mother wavelet of the CWT must fulfill three conditions. First, the mean must equal 

zero, that is, ( ) 0
-

=∫
+∞

∞
dttψ , which ensures it that it oscillates across positive and negative 

values and, thus, is nonzero locally. Second, its square must integrate to unity, that is, 

                                                
2
 Feature extraction simplifies the resources required to describe a large set of data accurately. If we carefully 

choose the features to extract, then the features set will provide the relevant information from the input data to 

perform the desired task, using this reduced representation instead of the full-sized input. The self-similarity of a 

time series means the series exhibits long-term dependence (i.e., the whole series possesses the same shape, 

such as wave and cycle, as one or more of its parts). Taking advantage of feature extraction and self-similarity 

detection, the CWT extracts the local amplitudes of a time series (e.g., business cycle series) in time and 

frequency domains. Then, the ensuing wavelet coherency and phase difference tools measure whether and how 

the local amplitudes of two time series correlate, and which one leads. 
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( ) 1
-

2 =∫
+∞

∞
dttψ , which implies a limitation to an interval of time. Finally, it must satisfy the 

admissibility condition, which means that: 

( )
+∞= ∫

∞+

≺

⌢

≺ ω
ω

ωψ
ϕ dC

0

2

0 ,                        (3) 

where ( )ωψ
⌢

 is the Fourier transform of the mother wavelet ( )tψ . In wavelet theory and 

practice, various types of mother wavelets exist for various purposes, such as the Haar, 

Morlet, Daubechies, Mexican hat and so on wavelets. Among them, the most popular and 

applicable mother wavelet for feature extraction is the Morlet wavelet, which Grossman and 

Morlet (1984) introduce. It is as follows: 

( ) 2-41-
2
00 ωωπψ eet

ti= ,                            (4) 

where 41-π  ensures its unity energy (i.e., ( ) 1
-

2 =∫
+∞

∞
dttψ ) and 

22
0ω−

e  ensures that it satisfies 

the admissibility condition of equation (3). In particular, when the dimensionless frequency 

0ω  equals 6, the Morlet wavelet achieves optimal trade-off between time and frequency 

localization (Grinsted et al., 2004). According to Aguiar-Conraria and Soares (2013), the 

Fourier frequency f  is given by ( ) ssf πω 20= . Therefore, for the best choice of 60 =ω , 

the conversion from the wavelet scale s  to the Fourier frequency f  occurs in the sense 

that:  

ssf 126 ≈= π .                              (5) 

As a result, the wavelet scale approximates a reciprocal of the Fourier frequency, 

which implies that ( )tx  decomposes into a joint time-frequency plane where the shorter 

(longer) wavelet scale corresponds to the higher (lower) frequency. Moreover, since the 

Morlet wavelet is a complex wavelet, the CWT divides into real and imaginary parts. As such, 

we can calculate the amplitudes and phases of the CWT for further estimations of wavelet 
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power spectrum, wavelet coherency and phase difference. 

3.2 Wavelet power spectrum 

In wavelet theory and practice, the wavelet power spectrum of one series ( )tx , namely the 

auto-wavelet power spectrum, is simply defined as ( )
2

, sWx τ . It presents a measure of the 

localized variance, that is, the localized volatility of ( )tx  at each scale or frequency. 

Furthermore, since Hudgins et al. (1993) first introduce the cross-wavelet transform of ( )tx  

and ( )ty  as ( ) ( ) ( )sWsWsW yxxy ,,,
* τττ = , the cross-wavelet power spectrum is accordingly 

written as:  

( ) ( ) ( )
2

*22

,,, sWsWsW yxxy τττ = ,                     (6) 

where
 
the asterisk indicates the complex conjugation. The cross-wavelet power spectrum can 

give a measure of the localized covariance between ( )tx  and ( )ty  for the specified 

frequency. 

In this paper, the wavelet power spectrum depicts the localized volatility of the U.S. 

real estate and stock markets as well as estimates the wavelet coherency between the two 

markets. Note that, in wavelet power spectrum plots, the wavelet power of real estate and 

stock series is marked by color bars on the right side, where red colors correspond to high 

power while blue colors correspond to low power. That is, the color bars also correspond to 

the localized volatility of the underlying series. 

3.3 Wavelet coherency and phase difference 

Wavelet coherency allows for a three-dimensional analysis, which simultaneously considers 

the time and frequency components, as well as the strength of correlation between the 

time-series components (Loh, 2013). In this way, we can observe both the time- and 

frequency-variations of the correlation between series in a time-frequency space. 
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Consequently, the wavelet coherency provides a much better measure of co-movement 

between the U.S. real estate and stock markets in comparison to the conventional correlation 

analysis as well as the dynamic conditional correlation analysis (Zhou, 2010; Liow, 2012; 

Loh, 2013). Following the approach of Torrence and Webster (1999), we estimate wavelet 

coherency by using the cross-wavelet and auto-wavelet power spectrums in the sense that: 

( )
( )( )

( )( ) ( ) 







=
−−

−

2
121

2
1

2

,,

,

,

xWsSsWsS

sWsS

sR

yx

xy

xy

ττ

τ
τ .                    (7) 

Here, we calculate wavelet coherency with the above squared type and the 

smoothing operator S 3
. In this way, it gives a quantity between 0 and 1 in a time-frequency 

window. Zero coherency indicates no co-movement between real estate and stock markets 

while the highest coherency implies the strongest co-movement between the two markets. In 

the empirical section, we also clearly mark the squared wavelet coherency with color bars on 

the right-hand side of the wavelet coherency plots, where red colors correspond to a strong 

co-movement whereas blue colors correspond to a weak co-movement.  

Because the wavelet coherency is squared, we cannot distinguish between positive 

and negative co-movements. Therefore, we subsequently use the phase difference to provide 

information on positive and negative co-movements as well as the lead-lag relationships 

between the two markets. According to Bloomfield et al. (2004), the phase difference 

characterizes phase relationship between ( )tx  and ( )ty  such that: 

( )( )}{
( )( )}{ 














ℜ

ℑ
=

−

−

−

sWsS

sWsS

xy

xy

xy
,

,
tan

1

1

1

τ

τ
φ , with [ ]ππφ ，-∈xy ,             (8) 

where ℑ  and ℜ  are the imaginary and real parts of the smoothed cross-wavelet transform, 

respectively.  

                                                
3 Without smoothing, the squared wavelet coherence would always equal 1 at any frequency and time. Smoothing is 

achieved by convolution in time and frequency; see Torrence and Compo (1998) for details. 
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A phase difference of zero indicates that the two underlying series move together 

while a phase difference of π  ( π− ) implies that they move in the opposite direction. If 

( )2,0 πφ ∈xy , then the series move in phase (positively co-move) with ( )tx  leading ( )ty . If 

( )ππφ ,2∈xy , then the series move out of phase (negatively co-move) with ( )ty  leading 

( )tx . If ( )2, ππφ −−∈xy , then the series move out of phase with ( )tx  leading ( )ty . If 

( )0,2πφ −∈xy , then the series move in phase with ( )ty  leading ( )tx . Note that, the phase 

difference can also indicate causality between ( )tx  and ( )ty  in both the time and frequency 

domains. As a consequence, it dominates the conventional Granger causality test, which 

assumes that a single causal link holds for the whole sample period as well as at each 

frequency (Grinsted et al., 2004; Tiwari et al., 2013). For example, if ( )tx  leads ( )ty , then it 

suggests a causal relationship running from ( )tx  to ( )ty  at a particular time and frequency. 

Given that economic fundamentals could significantly affect both the U.S. real estate 

and stock markets , we, therefore, hope to eliminate the effects of economic growth to 

uncover the real co-movement and causality between the two markets. For this purpose, we 

rely on partial wavelet coherency and partial phase difference extensions of wavelet 

coherency and phase difference, respectively. According to Aguiar-Conraria and Soares 

(2013), we can define the squared partial wavelet coherency between ( )tx  and ( )ty  after 

controlling the series ( )tz  as follows: 

( )
( ) ( ) ( )

( )( )( ) ( )( )( )22

2
*

2

,1,1

,,,
,

sRsR

sRsRsR
sR

yzxy

yzxzxy

zxy
ττ

τττ
τ

−−

−
= ,                      (9) 

where ( )sRxz ,τ  and ( )sRyz ,τ  indicate the wavelet coherencies between ( )tx  and ( )tz  as 

well as ( )ty  and ( )tz , respectively. Accordingly, we can also represent the partial phase 

difference as follows: 
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( )( )
( )( )














ℜ

ℑ
= −

sC

sC

zxy

zxy

zxy
,

,
tan 1

τ

τ
φ                            (10) 

where ℑ  and ℜ  indicates the imaginary and real parts of the complex partial wavelet 

coherency ( )sC
zxy

,τ , respectively. The complex partial wavelet coherency, as the name 

implies, is the complex type of ( )sR
zxy

,τ  before taking the absolute value. 

4. Data and Empirical Results 

We use U.S. annual data ranging from 1890 to 2012. We acquire the real house and stock 

prices from the online data segment of Robert J. Shiller’s website.
4
 The data on gross 

domestic product at constant 2005 dollars come from the Global financial database. We 

transform all these real series by taking natural logarithms to correct for potential 

heteroskedasticity and dimensional differences between the series. Then, we take 

first-differences of the concerned variables to get year-on-year growth rates of real stock 

prices, real housing prices, and real GDP. Note that we define the growth rates of real stock 

prices and real housing prices in this paper as the stock returns and housing returns, 

respectively.  

Figures 1, 2, and 3 report the time series plots and auto-wavelet power spectrums of 

real stock returns, real housing returns, and real economic growth, respectively. The thick 

black lines in wavelet power spectrum plots contours designate the 5-percent significance 

level estimated from Monte Carlo simulations using a phase randomized surrogate series. The 

regions below the thin black lines are cones of influence (COI) in which edge effects exist.
5
 

As mentioned before, we employ the wavelet power spectrum as an indicator of the local 

                                                
4
 http://www.econ.yale.edu/~shiller/data.htm. Note that to generate real house and stock prices, Shiller deflates 

the corresponding nominal values with the Consumer Price Index (CPI). 

5
 Following Torrence and Compo (1998) and Grinsted et al. (2004), the CWT assumes that the time series are 

cyclical. When transforming and plotting wavelets for the series with finite length, the amplitudes inside the 

COI drop by a factor 2−
e  due to zero padding at the edge. In addition, the edge effects are inversely 

proportional to the frequency. Therefore, we must pay special attention not to misread results inside the COI, 

especially at lower frequencies.  
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volatility of underlying series. 

Figure 1 shows that the U.S. stock returns exhibit high wavelet power across the 3-10 

year frequency band during the interwar period. Within this period, the great bull market, 

which is generally regarded as one of the biggest stock-market bubbles of all time, crashed in 

1929 and the stock market fluctuated dramatically until 1939. In the 1970s, the power of 

stock returns increase, as a result of the severe oil shock in 1973 and 1978. During the 2000s, 

the high wavelet power across the 6-8 year frequency band corresponds to the recent 

remarkable boom-bust cycle in the stock market.  

Figure 2 indicates that a relatively high wavelet power of the U.S. housing returns 

exists before the 1950s. Before the World War I, we see high power across the 2-6 year 

frequency band, as a result of a succession of boom-bust fluctuations in the U.S. housing 

market during this period. At the end of World War II, the housing returns exhibited rapid 

growth in the mid-1940s, however subsequently collapsed in 1947. After that, the volatility of 

housing returns declines significantly, with the exception over the 1970s and 1980s, when the 

housing returns rose above and fell below zero in the late 1970s and late 1980s. Most recently, 

the great housing bubble peaked around the beginning of 2006 and finally burst at the end of 

2006, contributing the worst housing crash in U.S. history. 

Figure 3 shows that U.S. economic growth exhibits high power across the 2-8 year 

frequency band until the 1950s. The extremely high power at lower frequency between the 

1930s and the 1950s corresponds with the “Great Depression” period marked by the deepest 

and longest-lasting economic downturn in history. After that, the volatility of economic 

growth declines steadily. Since the 1980s, the volatility decreased significantly at all 

frequencies, corresponding to the “Great Moderation” (Blanchard and Simon, 2001). As 

Aguiar-Conraria et al. (2008) find, we also observe that the Great Moderation associates with 

a secular rather than decadal trend. 
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In general, the wavelet power spectrums yield consistent results with the time plots, 

reflecting several major booms and busts in the U.S. real estate and stock markets within the 

sample period. Meanwhile, the stock returns also appear to associate with housing returns for 

several sub-periods. We cannot determine, however, the co-movement and lead-lag 

relationship, which can indicate causality, between the two markets through the wavelet 

power spectrums. Therefore, we resort to wavelet coherency and phase difference between 

the U.S. real housing returns and real stock returns, with the results of estimation shown in 

Figure 4.
6
 The correlated regions inside the COI and above 10-percent significance level do 

not provide reliable indications of co-movement and causality. 

Figure 4 shows positive and strong co-movement between the U.S. real estate and 

stock markets. The co-movement, however, does depend on the frequency and is unstable 

over the period 1890 to 2012. More specifically, from 1903-1910 and 1915-1933, the two 

markets show an average coherency of 0.8 across the 3-6 year frequency band with an 

in-phase relation indicated by the phase difference between 2π−  and 2π , implying a 

high degree of co-movement despite frequent boom-bust fluctuations in the two markets 

during these two periods. From 1938-1955, we observe positive co-movement scattered 

across the 2-10 year frequency band with an average coherency of 0.7. After that, such 

co-movements appear temporarily around the 3 year frequency band from 1973-1978, when 

the severe oil prices shock greatly contributed to the U.S. housing market instabilities and the 

two successive stock-market decreases in 1973 and 1974, as well as from 1984-1991, when 

the U.S. stock market crashed in 1987 and almost at the same time the housing returns also 

went through a temporary drop until 1992. Then, in the last decade, we find an increased 

coherency of 0.9 and an in-phase relationship both at high and low frequencies, meaning that 

the two markets positively and highly co-move during the financial crisis. These findings 

                                                

6 We thank Professors Aguiar-Conraria and Soares for providing us the wavelet package to plot the wavelet 

coherency and phase difference between the U.S. stock returns and housing returns.  
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support the existence of time- and frequency-varying features in the correlations between the 

U.S. real estate and stock markets, but prove largely inconsistent with the findings of 

Ibbotson and Siegel (1984), Hartzell (1986), and Eichholtz and Hartzell (1996), who suggest 

a single positive or negative co-movement between the U.S. markets for the specified sample 

periods.  

Figure 4 also shows an interesting picture of causality between the U.S. real estate and 

stock markets. In the 1900s, the stock returns lead the housing returns across the 4-6 year 

frequency band, suggesting that returns in stock market significantly affect the returns in 

housing market during this period. On the contrary, from 1915-1933, housing returns lead 

stock returns at the 3-6 year frequency band, indicating that returns in the housing market 

affected returns in the stock market. After that, at high frequencies, we see the causal link 

running from the stock returns to the housing returns repeatedly for several periods 

1938-1955, 1973-1976, 1984-1991 and 2000-2004. In the most recent decade, however, we 

find the reverse causal link from the housing returns to the stock returns both at the 2-4 year 

frequency band and at the 6-7 year frequency band. This provides evidence that the U.S. 

housing market significantly affected the stock market over the last ten years, especially for 

the four-year period 2007-2010. The great housing-bubble burst led to the remarkable stock 

market crash. Overall, as displayed in Figure 4, substantial time- and frequency-variations do 

exist in the causal relationship between the real estate and stock market returns, which largely 

contradicts with Shirvani et al. (2012) as well as Bouchouicha (2013), who suggest a stable 

causality between the U.S. residential real estate and stock markets holds in the whole sample 

period. 

the fundamentals of economic growth, however, can significantly influence the U.S. 

real estate and stock markets and, hence, the relationship between the two markets (Quan and 

Titman, 1999). This implies that the above results estimated by wavelet coherency and phase 
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difference without removing the simultaneous effects of economic growth on the two markets 

may suffer from some inaccuracy. As a result, we further estimate the partial wavelet 

coherency and partial phase difference with real GDP growth as a control variable to reveal 

the relationship between the two markets. Figure 5 reports the findings.
7
 Once again, we note 

that the correlated regions inside the COI and above 10-percent significance level do not 

provide reliable information on co-movement and causality.  

After controlling for real economic growth, Figure 5 shows that the co-movement 

between the U.S. real estate and stock markets differs substantially from the previous results. 

From 1905 to 1910, we find a high degree of positive co-movement increases at the 1-2 year 

frequency band, but decreases at low frequencies, compared to our prior findings. This 

reveals that within this period the U.S. real estate and stock markets kept strong co-movement 

over the short term. From 1915-1933, the positive co-movement found previously decreases 

significantly as well after removing the effects of economic growth, with a contracted 

correlated region covering only from 1918 to 1922. We do see an increased and stable 

co-movement from 1933 to 1948, in contrast with the scattered co-movement over the same 

period without controlling for economic growth. Moreover, unlike the previous result 

indicating insignificant and low co-movement at low frequency from the late 1950s to the late 

1970s, we now clearly see a high degree of long-term co-movement indicated by the partial 

wavelet coherency. More interestingly, we see the unusually negative co-movement indicated 

by the partial phase difference from 1998 to 2002, when the housing market experienced 

steady growth whereas the stock market slumped and finally crashed in 2000. Moreover, we 

do not observe any significant co-movement across all frequencies during the most recent 

financial crisis. This may imply that the U.S. real estate and stock markets actually respond 

more to economic growth fundamentals, rather than respond significantly to each other 

                                                
7
 The partial wavelet coherency and partial phase difference between the U.S. stock returns and housing returns are also 

estimated using the wavelet package provided by Aguiar-Conraria, L. and Soares, M. J. and we thanks again. 



19 

 

during these years. In other words, the great housing bubble and its bust, as well as the stock 

market boom and crash in recent decade may depend fundamentally on the business cycle of 

economic growth.  

The causality between the U.S. real estate and stock markets shows distinctive 

properties after controlling for economic growth. From 1905 to 1910, we see a short-run 

causality running from stock returns to housing returns, indicating that the stock market leads 

the housing market in the short run. From 1918 to 1922, the housing returns leads stock 

returns at the 3-4 year frequency band. however, That lead-lag relationship inverts at lower 

frequencies, however. From 1932 to 1948, the causality running from housing returns to 

stock returns becomes relatively stable over the long term, instead of an unstable and even 

inverse causal relation before controlling for economic growth. Between the late 1950s and 

the late 1970s, a significant time-variation exists in the causal relationship between the two 

markets. Before the early 1960s, housing returns lead stock returns; in the later 1960s and 

1970s, it lags behind stock returns. During the Great Moderation, we find that the housing 

market leads the stock market rather than the reverse, which we find when we do not control 

or economic growth. From 1998 to 2002, the housing returns significantly lead stock returns, 

resulting in a shift in money from the stock market into housing market. 

In sum, whether we control for economic growth or not, the above results provide 

robust evidence that the co-movement between the U.S. real estate and stock markets indeed 

varies across frequencies and evolves over time. In the time domain, the two markets 

generally show positive co-movement between the two markets with the exception from 1998 

to 2002 when a high degree of negative co-movement exists. Understanding markets 

co-movement and further distinguishing between positive and negative co-movement 

provides important practical information for portfolio managers. Since stocks provide the 

most convenient investment vehicle with low transaction costs and high liquidity while real 
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estate provides a ‘bulky’ asset with high transaction costs and low liquidity, homebuyers and 

investors use the two assets to diversify their portfolios (Lin and Fuerst, 2012). The 

diversification gain, however, depends on the nature and degree of the two markets 

co-movement. More specifically, it declines as the co-movement between the two assets 

become increasingly positive, but becomes important in the presence of low or negative 

co-movement. As a consequence, we can infer from our findings that a relatively low 

diversification gain emerges from the diversification of stocks and housing assets in the U.S. 

over our sample with the exception from 1998 to 2002 when the U.S. stock market dipped 

and investors accordingly became more active in the housing market. 

In the frequency domain, the two markets correlate with each other mainly at lower 

frequencies (the 2-10 year frequency band) with the exceptions from 1905 to 1910 and 1998 

to 2002, when the two markets correlate at high frequencies (i.e., short term). The 

identification of the co-movement between the markets at different frequencies is clearly 

pivotal for investors, since it suggests that investors with different investment horizons 

should pay more attention to the co-movement at corresponding frequencies so as to allocate 

their assets more effectively. More specifically, if investors prefer the short-term investment 

horizon, then they should focus on the co-movement at higher frequencies and, hence, the 

economic factors driving such co-movement. On the other hand, if investors prefer the 

long-term investment horizon, then they should focus on the co-movement at lower 

frequencies and the corresponding driving factors (Smith, 2001). As a result, our findings 

regarding the co-movement between the U.S. real estate and stock markets mainly across 

lower frequency bands imply that using stocks and real estate to diversify portfolios in the 

U.S. should focus on a long-term time horizon. In other words, the diversification gains from 

investing in stocks and real estate will prove more attractive to long-term investors, such as 

pension funds, insurance companies, and other institutions, rather than short-term investors. 
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In addition to information for investment strategies, the above analysis provides 

further robust evidence of causalities between the U.S. real estate and stock markets by using 

(partial) phase differences. The causality between the two markets helps policymakers and 

investors to forecast future performance from one market to the other through two 

transmission mechanisms, the “wealth effect” and “credit-price effect”. The wealth effect 

means a transmission channel running from the stock market to real estate market. Real estate 

serves as an investment and consumption good, while stocks do not involve direct 

consumption (Benjamin et al., 2004). As such, a rise in stock prices and, hence, an 

unexpected gain in stock returns increases real estate consumptions and prices. The 

credit-price effect implies that a rise in real estate prices leads to an increase in stock market 

prices. That is, when real estate serves as collateral, an increase in its value will reduce the 

cost of borrowing and enable credit-constrained homes and firms to increase consumption 

and investment, leading to a rise in stock prices.  

In this paper, we do not find any stable causality holding for the whole sample period. 

Rather, the causality findings exhibit substantial time- and frequency-dependence. From the 

frequency domain, causal effects exist between the U.S. real estate and stock markets 

generally across lower frequencies (i.e. long term). Thus, market performance forecasts 

should focus on longer time horizons so as to enhance the forecasting accuracy of investors 

and policymakers. From the time domain, the time-varying nature in the long-run causalities 

between the U.S. real estate and stock markets implies structural changes in the two markets. 

We observe the structural changes, referring to a long-term shift in the relationship between 

the two markets, intuitively from the partial phase difference at the 4-8 year frequency band 

in Figure 5(b). Before the mid-1920s, we find for several sub-periods causality running from 

stock returns to housing returns, indicating the presence of wealth effect. After that, a 

structural change occurs. The credit-price effect dominates in the U.S. economy until the 
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early 1960s, especially from 1932 to 1948 and from the late 1960s when statistically 

significant effects exist. The wealth effect reappears, however, between the 1960s and the 

1970s. Thereafter, we cannot identify any significant structural changes in the causality 

between the two markets. 

5. Conclusion 

This paper provides fresh new insights into the relationship between the U.S. real estate and 

stock markets from 1890 to 2012, applying the novel wavelet analysis. That is, since the 

presence of structural breaks made the result of non-causality between these two asset prices 

from standard linear Granger causality tests invalid, we need to adopt a time-varying 

approach. Wavelet analysis allows a simultaneous assessment of co-movement and causality 

between the two markets in both the time and frequency domains. Given that both the U.S. 

real estate and stock markets could respond significantly to changes in the fundamentals of 

economic growth, we also control for the growth rate of GDP to reveal the true relationships 

between the two markets by means of the partial wavelet coherency and partial phase 

differences. 

We do find that the co-movement between the two markets varies across frequencies 

and evolves with time. From the time domain, the two markets exhibit positive co-movement 

over 1890 to 2012 with an exception from 1998 to 2002 when negative co-movement occurs. 

Therefore, we conclude, in general, that a low diversification gain emerges from combining 

stocks and housing assets in a portfolio. From the frequency domain, the two markets 

correlate with each other mainly at lower frequencies with the exceptions from 1905 to 1910 

as well as from 1998 to 2002, when the two markets exhibit correlation over the short term. 

This implies that combining stocks and real estate in a portfolio achieves diversification 

generally only at the long-term horizon. More specifically, we also find that the co-movement 

during the recent financial crisis decreased significantly after controlling for economic growth, 
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suggesting that the two markets actually respond more to economic growth fundamentals 

rather than respond significantly to each other during these years. 

We do not find any stable causal links between the U.S. real estate and stock markets 

for the whole sample. Rather, substantial time- and frequency-dependence effects exist. In the 

frequency domain, the causal effects occur between the two markets generally across lower 

frequencies (i.e., long term), implying that market performance forecast should focus on a 

longer time horizon so as to enhance the forecasting accuracy of investors and policymakers. 

From the time domain, the time-varying features in the long-run causalities between the two 

markets imply structural changes in the two markets.  
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Figure 1: The time series of the U.S. stock returns (a) and its wavelet power spectrum (b). For the 

wavelet power spectrum, the y-axis refers to the frequencies (measured in years); the x-axis refers to the 

time period over the period 1890-2012. The color bar on the right side corresponds to the strength of 

wavelet power and the local volatility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The time series of the U.S. housing returns (a) and its wavelet power spectrum (b). For the 

wavelet power spectrum, the y-axis refers to the frequencies (measured in years); the x-axis refers to the 

time period over the period 1890-2012. The color bar on the right side corresponds to the strength of 

wavelet power and the local volatility.  
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Figure 3: The time series of the U.S. economic growth (a) and its wavelet power spectrum (b). For the 

wavelet power spectrum, the y-axis refers to the frequencies (measured in years); the x-axis refers to the 

time period over the period 1890-2012. The color bar on the right side corresponds to the strength of 

wavelet power and the local volatility. 
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Figure 4: The wavelet coherency (a) and phase difference (b, c) between the U.S. stock returns and 

housing returns. The y-axis refers to the frequencies (measured in years); the x-axis refers to the time 

period over the period 1890-2012. The color bar on the right side corresponds to the strength of 

correlation at each frequency. 
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Figure 5: The partial wavelet coherency (a) and partial phase difference (b, c) between the U.S. 

stock returns and housing returns, with real economic growth as a control variable. The y-axis 

refers to the frequencies (measured in years); the x-axis refers to the time period over the period 

1890-2012. The color bar on the right side corresponds to the strength of correlation at each frequency. 
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APPENDIX: 

Table A1: Ng- Perron (2001) MZa unit root test results 

 Level First differences 

Series (constant)a
 

(constant and trend)b
 

(constant)a
 

(constant and trend)b
 

LRSPP -0.57 -9.80 -58.68
***

 -63.13
***

 

LRHP -7.14 -9.94* -16.76*** -33.95*** 

Notes: LRSP (LRHP) denotes natural log of real stock price (real house price).  
***

, 
**

, and 
*
 indicates significance at the 1-, 5- and 10-percent levels, respectively.  

a
 This is a one-side test with the null hypothesis that a unit root exists; 1, 5 and 10 percent significance critical 

value equals to -13.800, -8.100, and 5.700, respectively. 
b This is a one-side test with the null hypothesis that a unit root exists; 1, 5 and 10 percent critical values equals 

-23.800, -17.300, -14.200, respectively. 

 

Table A 2: Granger Causality Tests 

Test 
H0: Stock Returns do not Granger 

cause Housing Returns 

H0: Housing Returns do not Granger 

cause Stock Returns 

 Statistic p-value Statistic p-values 

Chi-Square Test  0.4367 0.8038 2.6333 0.3225 

Bootstrap LR Test 1.4592 0.2900 2.0830 0.2390 

Notes: Causality tests based on a VAR(2) model, with the lag-length being determined by the Akaike 

Information Criterion (AIC). Residual-based bootstrap LR causality Tests, as suggested by Shukur and Mantalos 

(1997), are used to account for small-sample bias. 

The null-hypothesis is: No-causal relationship exists between the variables.  

 

Table A3: Multivariate Johansen (1991) Cointegration tests   

Series H0 
a H1 Trace Statistic Maximum Eigen Statistic 

LRSP and LRHP 

r = 0 

r≤ 1 

r> 0 

r> 1 

10.95 

0.37 

10.58 

0.37 

Notes: See Notes to Table A1.  

** indicates significance at the 5-percent level.  

a One-sided test of the null hypothesis (H0) that the variables are not cointegrated against the alternative (H1) of 

at least one cointegrating relationship. The critical values are taken from MacKinnon et al., (1999) with 

5-percent critical values equal to 15.49 for testing r = 0 and 3.84 for testing r≤ 1 for the Trace test. The 

corresponding values for the Maximum Eigenvalue tests are 14.26 and 3.84. 
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Table A4: Parameter Stability Tests of the Long-Run Relationship  

 Sup-F Mean-F Exp-F Lc 

LRSP = αααα + ββββ*LRHP   145.46 
***

 68.23 68.99    10.19 
***

 

Bootstrap p-value
 <0.01 1.00 1.00  0.01 

Notes: See Notes to Table A1. 

The parameter stability tests exhibit non-standard asymptotic distributions. By means of the parametric 

bootstrap procedure, Andrews (1993) and Andrews and Ploberger (1994) report the critical values and p-values 

for the non-standard asymptotic distributions of these tests.
8
 Besides, according to Andrews (1993), 15-percent 

trimming from both ends of the sample is required for the Sup-F, Mean-F and Exp-F. Hence, the tests are 

applied to the fraction of the sample in (0.15, 0.85). The 
c

L
 

test proposed by Nyblom (1989) and Hansen 

(1992) is mainly applied to investigate the long-run parameters stability, with the on the long-run relationship 

estimated using the Fully Modified ordinary least squares (FM-OLS) estimator of Phillips and Hansen (1990). 

Particularly when the underlying series are I (1), as is the case shown in Table A1, it also serves as a test of 

Cointegration.  

We calculate p-value using 2,000 bootstrap repetitions.
 

*** indicates significance at the 1 percent level, with the null being stability of parameters. 

 

Table A5: Short-Run Parameter Stability Tests  

 Real Housing Returns 

Equation 

Real Stock Returns 

Equation 
VAR (2) System 

 
Statistics 

Bootstrap 

p-value 
Statistics 

Bootstrap 

p-value 
Statistics 

Bootstrap 

p-value 

Sup-F 58.27
***

 <0.01 20.13
***

 <0.01 46.04
***

 <0.01 

Mean-F 30.38
***

 <0.01 5.66 0.31 24.00
***

 <0.01 

Exp-F 25.06
***

 <0.01 6.71
**

 0.03 18.69
***

 <0.01 

Notes: See Notes to Table A4. 
*, ** and *** denote significance at 10-, 5- and 1-percent levels, respectively, with the null being stability of 

parameters. 

 

                                                

8 Specifically, the critical values and p-values are obtained using asymptotic distribution constructed by means 

of Monte Carlo simulations using 2000 samples generated from a VAR model with constant parameters. 


