MATHEMATICS

Foundation Phase

Table of Contents MATHEMATICS 1

1. INTRODUCTION 5
2. COUNTING AS THE ORIGIN OF A NUMBER SENSE 6
2.1 WHAT IS COUNTING 6
3. TEACHING CHILDREN TO COUNT THROUGH SONGS AND RHYMES 9
4. HISTORY OF COUNTING 12
4.1 Illustration A: Finger counting 12
4.2 Illustration B: 10 Fingers. 12
INFORMATION 13
5. TYPES OF KNOWLEDGE RELATED TO COUNTING 15
ILLUSTRATIVE EXAMPLES OF VARIOUS TYPES OF KNOWLEDGE 16
6. TYPES OF COUNTING 17
6.1 Verbal counting 17
6.2 Object counting 17
6.3 Rote counting 17
6.4 Rational Counting 18
7. COUNTING PRINCIPLES 20
INFORMATION 20
8. VOCABULARY AND SYMBOLS 22
9. STRATEGIES TO TEACH COUNTING IN THE FOUNDATION PHASE 23
How to introduce counting 23
9.1 Counting all 23
9.2 Counting on 24
9.3 Counting from 24
9.4 Counting between 24
9.5 Counting backwards 25
9.6 Skip counting: 25
9.7 Rote or verbal counting 25
9.8 Rational counting 26
9.9 Counting using objects (manipulatives) 26
9.10 Teach and sing counting songs 26
9.11 Practice counting with number lines or hundreds charts 27
9.12 Compare numbers 28
9.13 Breakdown numbers 28
9.14 Extend the sequence 28
9.15 Computation: Add and subtract 29
9.16 Write numbers 29
10. COUNTING ERRORS 30
10.1 Incorrect counting sequence 30
10.2 Counting too fast 30
11. LEVELS OF COUNTING 32
11.1 Level 1 - Count all 32
11.2 Level 2-Counting on 33
11.3 Level 3- Break down and build up numbers 34
12. 4 Estimate and Count 35
12 RESOURCES FOR COUNTING 36
13 ORDERING, COMPARING AND PLACE VALUE OF NUMBERS 37
13. NUMBER RELATIONSHIPS 39
14. POSSIBLE RELATIONSHIPS AND HOW TO DESCRIBE THEM IN MATHEMATICAL LANGUAGE 40
15. READING NUMBERS 41
16. ASSESSMENT ACTIVITIES FOR COUNTING 42
17.1 Count the dots 42
17.2 Compare numbers 43
17.3 Fill in the missing numbers 44
17.4 Ordinal Numbers 45
17.5 Ordinal numbers 46
17.6 Cardinal numbers 47
17.6 Expanded form 48
17.7 Skip counting 49
17. REFERENCE 50

1. INTRODUCTION

Young children are sometimes referred to as "splendid little mathematicians." They have a natural inborn tendency to discover the world around them and they use mathematics as a fundamental way of understanding and describing their world (Ginsberg, 2008:55)

"Don't underestimate a child's ability, to do math."

Children need to acquire a deep understanding of number. An understanding of number (or number sense) is a foundational building block for all content areas in mathematics. There the CAPS document has prescribed 65\% for Numbers, Operations and Relationships.

A strong number sense is a strong predictor of success in mathematics. Learners who find maths difficult often have not developed a strong number sense. As number sense develops, mathematics take on more meaning. A strong number sense enable learners to make sense of their environment and become numerate people.

ACTIVITY 01 - INDIVIDUAL WORK

1.1 Think back to your childhood. Who taught you your first set of numbers?
1.2 Write down your number rhyme you learnt as a child. Did this number rhyme help you to gain a sense of numbers?
1.3 Critically discuss the rationale behind the prescribing 65\% for Numbers Operations and Relations for Mathematics in the Foundation Phase.
1.4 List 3 challenges learners will experience when their understanding of number sense is not well developed.

2. COUNTING AS THE ORIGIN OF A NUMBER SENSE

Learning to count is a great achievement in a child's life. Although counting itself does not equate to an understanding of number, it is often seen as a starting point of developing number sense.

Many of the mathematical concepts that learners learn in the first few years of school are closely tied to counting.

2.1 WHAT IS COUNTING

Counting is an intricate process by which children call number values by name.
Two kinds of counting can be identified

- Verbal counting - reciting the counting sequence in order from memory
- Object counting - the process of matching a number in an ordered sequence with every element of a set, with the aim of finding out "how many" are there. The last number assigned is the cardinal number of the set. (Reys, Lindquist, Lambdin, Smith \& Suydam. 2009 in Naude \& Meier, 2016)

Counting is the process of determining the number of elements of a finite set of objects.

The traditional way of counting consists of continually increasing a (mental or spoken) counter by a unit for every element of the set, in some order, while marking (or displacing) those elements to avoid visiting the same element more than once, until no unmarked elements are left; if the counter was set to one after the first object, the value after visiting the final object gives the desired number of elements.

The related term enumeration refers to uniquely identifying the elements of a finite (combinatorial) set or infinite set by assigning a number to each element.

Counting sometimes involves numbers other than one; for example, when counting money, counting out change, "counting by twos" ($2,4,6,8,10,12 \ldots$), or "counting by fives" (5, 10, 15, 20, $25 \ldots$...)

Counting is an important mathematical skill used throughout the Foundation Phase for problem solving. Meaningful counting activities help learners in developing two separate skills:

- Fluency with the counting of words and their sequence; and
- The ability to connect this sequence in a one-to-one correspondence to the object being counted.

ACTIVITY 02 - GROUP WORK - SHARE YOUR VIEWS AND IDEAS WITH YOUR PARTNER

2.1 Explain what you understand by counting.
2.2 Differentiate between 'verbal counting' and 'object counting'

2.3 Explain what is meant by a 'cardinal number' of a set.

2.4 Circle the cardinal number in each of the following examples
2.4.1 $A=\{0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6\}$
$B=\{0 ; 2 ; 4 ; 6 ; 8 ; 10 ; 12 ; 14\}$
2.5 What is the difference between 'cardinal numbers and ordinal numbers?"

FOR YOUR INFORMATION

In general use, 'cardinal' is used to refer to natural numbers, $0,1,2,3 \ldots$ and 'ordinal' to refer to place numbers, 1st, 2nd, 3rd,...

Ordinal numbers all use a suffix. The suffixes are: -nd, -rd, -st, or -th. Examples: 'second' (2nd), 'third' (3rd), 'first' (1st), and 'tenth' (10th). We use ordinal numbers for dates and the order of something (think ordinal = order).

WORKSHEET
\qquad

Ordinab Numbers

3			2
	4	1	
	3	2	
4			1

				9				4
4	1				3			
8		7	6		4	2	1	
		1			7			2
	6			4			9	
2			5			7		
	4	8	3		6	9		7
			4				2	1
6				1				
Copyight 2005 M. Feenstra. Den Haag								

3. TEACHING CHILDREN TO COUNT THROUGH SONGS AND RHYMES

One, two, Buckle my shoe; Three, four, shut the door;
Five, six, Pick up sticks; Seven, eight, Lay them straight; Nine, ten, A big fat hen.

Five little ducks went swimming one day

Over the pond and far away
Mother duck says quack, quack, quack

But only four little ducks came back.

Four little ducks went swimming one day...
\qquad but only three little ducks came back
Three little ducks \qquad
but only two little ducks came back
Two little ducks
\qquad but only one little duck came back

One little duck went swimming one day
Over the pond and far away
Mother duck say quack, quack, quack
And all little ducks came back.

1, 2, 3, 4, 5 Once I Caught a Fish Alive

One, two, three, four five Once I caught a fish alive.

Six, seven, eight, nine, ten Then I let it go again.

Why did you let it go?
Because it bit my finger so.
Which finger did it bite?
This little finger on my right.

Seven little blackbirds in a tree
 Count them and see what they be.

One for sorrow,

Two for joy,

Three for a girl

Four for a boy

Five for silver

Six for gold

Seven for a secret

That's never been told

5 Little Monkeys

Two little monkeys jumping on the bed, One fell off and bumped his head, Call for the doctor,
The doctor said, "No more monkeys jumping on the bed!"

One little monkey jumping on the bed,
One fell off and bumped his head,
Call for the doctor,
The doctor said,
"Put those monkeys straight to bed!"

THIS OLD MAN

Create a hand-jive to go with this song

- This old man, he played one

He played knick-knack on my thumb [some versions use "drum"]
With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played two
He played knick-knack on my shoe With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played three He played knick-knack on my knee With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played four He played knick-knack on my door With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played five He played knick-knack on my hive With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

- This old man, he played six

He played knick-knack on my sticks
With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played seven
He played knick-knack up in heaven With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played eight
He played knick-knack on my gate With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played nine
He played knick-knack on my spine [some versions use "line" here]
With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

This old man, he played ten
He played knick-knack once ag'n [some versions use "on my hen" here]
With a knick-knack paddywhack, give a dog a bone, This old man came rolling home

ACTIVITY 03

3.1 Identify number songs and rhymes in your cultural language. Share these songs and rhymes with your colleagues.
3.2 How can you use these songs and rhymes in an integrated manner to teach Languages and Life-skills? Think of the specific skills of the subjects and plan activities.

4. HISTORY OF COUNTING

4.1 Illustration A: Finger counting

Do you know how counting began? Long ago, in prehistoric times, people had no need to count. They didn't have to be able to count in order to hunt the animals they used for food and clothing. They had no such things as hours, weeks or months to keep track of. But a time finally came when people did need to count. Perhaps it was when they learned to tame animals and keep herds. They wanted to know how many sheep or goats they had.

4.2 Illustration B: 10 Fingers

In the beginning, people did all their counting on their fingers. Because they had ten fingers, they counted things by tens. They would count up to ten fingers and then start again. Ten became a sort of stopping place in counting. So the first ten numbers were given special names.

People soon decided that the number 100 was also a stopping place because it was ten of something -it was 10 tens. So they gave it a special name too. 1,000 was special because it was also ten of something - 10 hundreds.

These ten numbers are very important in our system of counting.

ACTIVITY 04

4.1 Why do you think people needed to have an understanding of counting in prehistoric times?
4.2 Think of all the things around you that are broken up into units of tens or are a certain number of tens.

INFORMATION
Positive powers

Name	Power	How it is written	Number value
Ten	1	10^{1}	10
Ten	2	10^{2}	100
Ten	3	10^{3}	1000

Ten in:

Maths and Science	- Decade - Decimal - The metric system is based on the number 10 , so converting units is done by adding or removing zeros (e.g. 1 centimeter $=10$ millimeters, 1 decimeter $=10$ centimeters, 1 meter $=100$ centimeters, 1 decameter $=10$ meters, 1 kilometer $=1,000$ meters).
Religion	- 10 commandments - You tithe - one tenth - 10 plagues of Egypt - In Judaism, ten men are the required quorum, called a minyan, for prayer services. - Jesus tells the Parable of the Ten Virgins in Matthew 25:1-13 - In Hinduism, Lord Vishnu appeared on the earth in 10 incarnations, popularly known as Dashaavathar
Money	- Most countries issue coins and bills with a denomination of 10 (R10 note; $\$ 10$ note. One dime, with the value of ten cents, or one tenth of a dollar, derives its name from the meaning "one-tenth"

Sports	- In boxing, if the referee counts to 10 whether the boxer is unconscious or not, it will declare a winner by knockout - Ten pin bowling - In blackjack, the Ten, Jack, Queen and King are all worth 10 points.
Technology	- Ten-codes are commonly used on emergency service radio systems

8	1	6
3	5	7
4	9	2

Puzzles.Pics

5. TYPES OF KNOWLEDGE RELATED TO COUNTING

Teachers need to have a profound understanding of developing number sense in learners. An in-depth understanding of the different types of knowledge relating to counting will significantly help in planning of lessons to accommodate the different learning styles.

The diagram below represents a triachy of knowledge in counting

MATHEMATICS is not about numbers, equations, computations, or algorithms: it is about UNDERSTANDING.

William Paul Thurston

TYPE OF KNOWLEDGE	EXPLANATION
Physical knowledge	Manipulating counting objects in the counting process through the use of sense (feeling/touching while counting) and body (e.g. jumping or clapping) while counting
Social knowledge	Learning the number names and counting sequence through practice and repetition (counting rhymes, songs and games). Also, learning to recognise and write number symbols and words through social interaction.
Conceptual knowledge	Knowledge of counting principles and strategies (understanding concepts such as counting on, counting back, etc.), gained from physical and social interaction with the environment.

ACTIVITY 05

5.1 Name the 3 types of knowledge every Foundation Phase teacher should understand.
5.2 Give practical examples how you will use physical, social and conceptual knowledge in the maths lesson in your class.
5.3 Critically discuss the importance of applying physical, social and conceptual knowledge in an integrated manner in your mathematics lessons.

Problem 6: Tina is storing 20 packages of seeds in boxes. Each box holds 6 packages. How many boxes does Tina need to store all the packages?

Study the above illustrations carefully and discuss with your partner.
5.4 Critically discuss the advantages and disadvantages of social learning (learning from each other).
5.5 Discuss the importance of conceptual knowledge in mathematics in the Foundation Phase.

6. TYPES OF COUNTING

The ability to count with confidence develops over the course of several years. Age of the learner is not a clear indication of the actual competencies of a child to count, however exposure and experience in counting activities greatly influence a child's development.

6.1 Verbal counting

- Counting can be verbal; that is, speaking every number out loud (or mentally) to keep track of progress.
- Also known as rote counting - simply means reciting the counting sequence from memory

6.2 Object counting

- Object counting implies the process of matching a number in an ordered sequence with a collection of objects in a set (e.g. Counters, fingers, pictures, etc.), with the aim of finding out how many.
- Object counting includes correspondence and cardinality.

6.3 Rote counting

ROTE COUNTING

- Rote counting (Parrot-like counting) implies that a learner can recite the number names in the correct order from memory, e.g. the learner says: "One - two - three - four - five - six - seven - eight - nine - ten" (in the correct sequence without using objects).
- Rote counting is important in the Foundation Phase, because it teaches learners the sequence and the language of numbers. Through rote counting, they also gain understanding of the rhythm and pattern that is within numbers.
- Some learners may know some number names, but not necessarily the correct sequence, therefore, do not limit their counting experiences - they need frequent and repeated practise to develop rote counting skills.
- PRACTICAL IDEAS?

More ideas for rote counting

One little bee...

- One little bee blew and flew. He met a friend, and that made two.
- Two little bees, busy as could be-Along came another and that made three.

- Three little bees, wanted one more, Found one soon and that made four.
- Four little bees, going to the hive. Spied their little brother, and that made five.
- Five little bees working every hour-Buzz away, bees, and find another flower.

RATIONAL COUNTING

- Rational counting - count with understanding.
- Involves the counting of real objects
- It involves matching each number name in order to a series of objects.

- The learner must see and handle the real object and be able to maintain a correct correspondence between the objects been counted and the number names.
- The last number name spoken shows the total value (the "how-many-ness").

Touch and count...

ACTIVITY 06

6.1 Explain what you understand by verbal and object counting.
6.2 Differentiate between rote counting and rational counting.
6.3 Critically discuss the importance of rote and rational counting in the Foundation phase.

> Never say, "I can't" Always say, "I'll try"

7. COUNTING PRINCIPLES

According to Clements \& Sarama (2009) there are 6 basic counting principles pertinent to Foundation Phase. The development of learning to count with understanding relies on the following principles:

Principle	Explanation
Stable order principle	The idea that the counting sequence stays consistent; children need to know that the number words should be said in the same order, that is 1, 2, 3, 4, 5, 6, 7, 8 and not 1, 2, 3, $5,6,8$
One-to one correspondence	The idea that each object being counted must be given one count and only one count. In the early stages, it is useful for learners to tag each item as they count it and to move the item out of the way as it is counted
Cardinality	The concept that the last word said stands for the total number of objects in the set. The cardinal number tells 'how many'.
Order irrelevance principle	The idea that the counting of object can begin with any object in a set and the total will still be the same. Children need to know that it does not matter where they start counting, as long as each object is counted only once
Movement in magnitude	The idea that, as one moves up the counting sequence, the quantity increases by 1 or by whatever number is being counted for example counting in 2s, 3s etc.
Abstraction	The idea that the quantity can be represented verbally, physically e.g. 5 can be represented by 5 similar objects, 5 invisible/imaginative things or symbolically (symbol 5).

INFORMATION

1. Consistently use the number words in the same order (stable order principle)
2. Count every item in a set only once, using only one number word (one-one principle)
3. Understand that the last number word used represents the cardinality of the set (cardinal principle)
4. Recognize that any collection of like or unlike items can be counted as a set (abstraction principle)
5. Understand that the result is the same no matter the order in which the objects are counted (order irrelevance principle)

ACTIVITY 07

7.1 List the number of counting principles pertinent to the Foundation Phase.
7.2 Name and discuss each of the counting principles.
7.3 Why is it important that teachers must make sure that learners have a good understanding of the application of the counting principles?

Dear math,

stop asking me to find your x.
He's not coming back.
Qosoffantion
How many Triangles are there?? Lets see how smart are you?

Makes YOUR LiFe aDD UP!

8. VOCABULARY AND SYMBOLS

Language plays an important role in developing number sense, where number words provide children with verbal tools to make their thinking about number explicit. Learning the number names from 1 to 20 may involve memorization, but children should learn to recognize and use the repeated patterns that occur after 20 as they continue the number sequence (Fosnot \& Dolk, 2001; Fuson, 2012; Fuson, Richards, \& Briars, 1982).
It is very important that learners understand the mathematical vocabulary and symbols pertaining to counting.

Number: An object used to count. $0,1,2,3,4$	Numeral: A symbol used to describe a number 3	Counting: Finding the amount of a set
Cardinal number: The amount of a set. $1,2,3$ objects 3 is the cardinal number	Ordinal number: A word that shows the order in a set Third Fifty-seventh	Even: A number divided evenly by 2.
Odd; A number not divided by 2	Quantity: The amount of a set	More: A word describing a set that is larger
$1,3,5,7,9$	0,2,4,6,8,10	
Less: A word describing a set that is smaller	Equal Two sets that have the same amount	

It is better to solve one problem five ways than to solve five problems one way

George Polya

Mathematics is the art of giving the same name to different things. Henri Poincare

9. STRATEGIES TO TEACH COUNTING IN THE FOUNDATION PHASE

How to introduce counting
Steps

1. Teach counting. ...
2. Introduce the numbers themselves
3. Discuss each individual number. ..
4. Incorporate images. ...
5. Engage the sense of touch. ...
6. Show children how to write their numbers. ...
7. Emphasize the importance of the sequence of numbers. ...
8. Teach the concept of "counting on."

9.1 Counting all

Counting All is exactly what it sounds like. Learners count every number to find the sum. Usually learners use Counting All if they cannot visualize what a number represents.

$$
10+2=12
$$

9.2 Counting on

Counting On is a strategy learner's use to, you guessed it...add numbers. Learners start using this strategy when they are able to conceptualize numbers. They move from counting everything or Counting All to Counting On. This addition strategy is so important because it's a sign that your students are beginning to do mental math. Learners have to be able to "hold" a quantity in their mind and then add on to it.

9.3 Counting from

Learners count from a given number e.g. count from 35 to 55 . Learners will not start counting from 1 but start from 35 onwards until he/she reaches 55 .

35; 36; 37; 38; 39; 40 55

9.4 Counting between

Learners will count only the numbers between the ranges for example. Count all the numbers between 30 and 50. Learners will not include numbers 30 and 50

31; 32; 33; 34; 35; $36 \ldots .49$

9.5 Counting backwards

9.6 Skip counting:

(1) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

9.7 Rote or verbal counting

Rote counting is the simplest number concept that children develop, and it merely consists of counting numbers sequentially. Counting by rote is a skill that come quite naturally to most children, as it doesn't require direct instruction to learn the skills needed to count.

Rote Counting

- Knowing how to recite numbers in correct order. It is the simplest of counting concepts to learn.
- Examples
- 1,2,3,4,
- 22, 32, 42, 52, ...
$-2,4,6,8, \ldots$

9.8 Rational counting

Rational counting refers to a child's ability to assign a number to the objects she is counting. As she counts a set of objects, the child must understand that the last number is equivalent to the total number of items in the set. Rational counting requires a mastery of rote counting and one-to-one correspondence.

Rational Counting

2. The order in which the items are counted must be undertaken in specific and appropriate number order (i.e., 1, 2, 3, ...)
3. The order in which the items are counted is irrelevant - it is possible to start at either end of a collection.
4. The last number counted represents the number in a collection

9.9 Counting using objects (manipulatives)

9.10 Teach and sing counting songs

It has been said that learning is child's play and this has become evident as young children become caught up in the rhythm and rhyme of traditional songs and chants.

Life is a math equation. In order to gain the most, you have to know how to convert negatives info positives

-Anonymous

9.11 Practice counting with number lines or hundreds charts

Learners use number lines in a variety of ways, including counting, comparing, adding and subtracting, rounding, measuring, and graphing.

9.12 Compare numbers

Compare Two Numbers Using a Number-Line. This selection will show how to compare two numbers using a number line. This will allow you to tell if a number is larger or smaller than another number, using a number line

The greater the number of digits, the greater is the number. If two numbers have the same number of digits, the number with the bigger digit on the left hand side is greater.

9.13 Breakdown numbers

Break apart - Dictionary definition and meaning for word break apart. (Verb) take apart into its constituent pieces. Synonyms: break up, disassemble, dismantle, and take apart. (Verb) break violently or noisily; smash. Synonyms: break up, crash

9.14 Extend the sequence

A sequence of numbers follows a pattern. If you can find that pattern, you can find more numbers in the sequence! When you're looking at a sequence, each value in that sequence is called a term.

Extend this bottom line

9.15 Computation: Add and subtract

Math computation skills comprise what many people refer to as basic arithmetic: addition, subtraction, multiplication and division.
Generally speaking, computations entail finding an answer to a problem via math or logic.

9.16 Write numbers

- Practice motions of writing numbers in sand
- Teach appropriate pencil holding
- Practice writing numbers on paper
- Learn rhymes for writing numbers
- Number Writing Rhymes
- Number 1 is like a stick, a straight line down that's very quick.
- For number 2 go right around, then make a line across the ground.
- Go right around, what will it be? Go round again to make a 3 .
- Down and over and down some more, that's the way to make a 4.
- Go down and around, then you stop, finish the 5 with a line on top.
- Make a curve, then a loop, there are no tricks to making a 6.
- Across the sky and down from heaven, that's the way to make a 7.
- Make an "S" and then don't wait, go up again to make an 8.
- Make a loop and then a line, that's the way to make a 9.

10. COUNTING ERRORS

10.1 Incorrect counting sequence

Counting Errors

incorrect counting sequence, correct one-to-one correspondence

10.2 Counting too fast

Counts too fast
Correct counting sequence, but incorrect one-to-one correspondence

Points too fast.

> Correct counting sequence, but incorrect one-to-one correspondence

ACTIVITY 10

11.1 Learners in your class are experiencing counting challenges. Some are counting to fast, thus skipping numbers, others are counting but are unaware of the sequence of the numbers. Discuss in detail how you will assist these learners to overcome these challenges.

LEVELS IN COUNTING AND NUMBER SENSE:

```
-Level 1:
-Level 2:
Count All
Count On
    counting back, skip counting and
    knowing from experience
    (visualisation/sight recognition)
- Level 3: Breaking Down and
    Building Up Numbers.
```

11.1 Level 1 - Count all

Level 1 : Count All

- The learner counts all the objects one by one to find the total number of objects.
- The learner must count in the correct order: one, two, three, four ... AND must also be able to connect this sequence in a one-to-one correspondence with the objects in the set being counted.
- Each object must get one count only.
- The learner is able to count rationally (with understanding)

LEVEL 2: COUNTING ON

- Learners with more counting experience (later in the grade 1 year), will be able to count on by ones from the first group of objects to find the total. This learner can start at any number and proceed from there, e.g.

I count on from 4:

I have 3
4, 5, 6, 7, 8, 9. I have 9!

- Learners who count on from the bigger number have made a big "thinking step" in their understanding of the "how-many-ness" of number. They realise that it is quicker to start with the bigger number (e.g. 6) and then just count on the additional smaller group (4). They know that the numbers up to 6 are still there - they do not have to count them again. They can do this in their minds.

Also important at Level 2:

- counting back - skip counting

- knowing from experience (visualisation)
11.3 Level 3-Break down and build up numbers

Level 3: Break down
 and build up numbers

- At Level 3, learners need to learn that when we break groups of objects into parts in different ways, their totals remain the same.
- At this level, learners are able to work with numbers in flexible ways.
- They have a sense of the "how-many-ness" of the numbers and can think of those numbers in a large range of different ways.
- They are able to break down (decompose) numbers, reorganise them and then build them up again (recombine).
- Grade 1, 2 and 3 learners must all be able to build up and break down numbers - within their number range.

Number cards to show the different combinations.

5
 0

11. 4 Estimate and Count

Estimate and Count

- An essential part of number sense and counting is to first estimate and then to count and verify the number.
- Estimation means that the learner must make a reasonable "guess" regarding how many or how much without counting or measuring.
- E.g. Learners might estimate how many objects are in a jar, or how many feet in the class.
- Learners should not just guess wildly. Estimation is based on prior knowledge, therefore, to be able to make a reasonable guess, learners need to have some counting experience and some sense of number.

12 RESOURCES FOR COUNTING

RESOURCES for Counting (also reading and writing numbers)

- Counters - Dried beans; Bottle caps; Seeds; Stones; Pebbles; Sticks; Bread tags; Beads; Buttons, ...
- Counting frames;
- Counting songs, rhymes, books;
- Dot cards;
- Number charts;
- Number track and number line;
- Numbers for tracing (indicating the starting point and direction of writing); Number frieze; Self-correcting number puzzles; and Worksheets (e.g. counting and dot-to-dot).

13 ORDERING, COMPARING AND PLACE VALUE OF NUMBERS

ORDERING, COMPARING AND PLACE VALUE OF NUMBERS

- What's in a number?
- Number terms and number sets - testl Write down your own understanding of the number term. Then discuss your understanding of the term with a peer and negotiate the most correct version
- Natural Number
- Whole Number
- Rational Number
- Cardinal Number
- Ordinal Number
- Nominal Number
- Odd Number
- Even Number
- Number Name
- Number Symbol

A number is a mathematical object used to count, measure, and also label.

Natural numbers	A number is a mathematical object used to count, measure, and also label.
Whole numbers	A number is a mathematical object used to count, measure, and also label.
Rational numbers	A number is a mathematical object used to count, measure, and also label.
Cardinal numbers	In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets
Ordinal numbers	An Ordinal Number is a number that tells the position of something in a list, such as 1st, 2nd, 3rd, 4th, 5th etc. Most ordinal numbers end in "th" except for: one \Rightarrow first (1st) two \Rightarrow second (2nd) three \Rightarrow third (3rd)

Nominal numbers	Nominal Number. more ... A number used only as a name, or to identify something (not as an actual value or position) Examples: • the number on the back of a footballer: "8"
Odd numbers	Odd numbers can NOT be divided evenly into groups of two. The number five can be divided into two groups of two and one group of one.
Even numbers	Even numbers always end with a digit of 0, 2, 4, 6 or 8. ... Odd numbers always end with a digit of 1, 3, 5, 7, or 9.
Number names	We often use word names to write numbers. A word name for 42 is "forty-two." The total number of weeks in a year, 52, is written as "fifty-two." For whole numbers with three digits, use the word
"hundred" to describe how many hundreds there are	
in the number. ... The word name for the number is	
"three hundred sixty-five."	

ACTIVITY 11

11.1 Discuss critically the three levels of counting. State clearly which levels are appropriate for each of the grades?
11.2 Explain the importance of integrating all level of counting when teaching young learners.
11.3 In mathematics, learners need to have an understanding of the different names assigned to different numbers. List each of the numbers and their names, also give an examples for each to strengthen learner understanding of the

ORDERING, COMPARING AND PLACE VALUE OF NUMBERS

- Numbers are related to one another through a variety of number relationships. We can only describe, order and compare numbers if we understand the relationship between numbers, for example...

14. NUMBER RELATIONSHIPS

Number Relationships

Possible relationships and how to describe them in mathematical

 language(Based on example with 8)

- More and less relationships (two more than 6 , one less than 9).
- Part-part-whole relationships The whole of eight is equal to two parts of four and four).
- Relationship with 10 (2 away from the "benchmark" 10).
- Between 7 and 9 (position of the number, $8^{\text {th }}$).
- Estimated/aboutten (closer to ten than to 0).
- Doubles and halves (Double 4, half of 16).

16. READING NUMBERS

3. What are the names of the classes?

Ones
Thousands Millions
Billions
Trillions
Quadrillions
Quintillions
Sextillions
Septillions
Octillions
Etc.

17. ASSESSMENT ACTIVITIES FOR COUNTING

17.1 Count the dots

Name

Count the dots.

What comes next?
54,

38 ,

Fill in the frame:
What is the number?

Fill in the missing mumbers.

1		3	4			7		9
	12		14			17		19
21			24	25			28	

Name

Unit 11 test

$80 \bigcirc 32$
$56 \bigcirc 37$
$25 \bigcirc 93$
$45 \bigcirc 62$
$74 \bigcirc 74$
$68 \bigcirc 34$

Put the numbers in order．Circle to molke it true．

$30,56,26,42 \quad 35$ is | greater than |
| :---: |
| less than |
| equal to | 56

$52,25,93,47$
一，二，—，一
greater than 49 is less than 24 equal to

Count by 2 to fill in the numbers：

2			8				16		

Count by 5 to fill in the numbers．

5				25				45	

Count by IO to fill in the numbers．

10						70			

17.3 Fill in the missing numbers

17.4 Ordinal Numbers

March is the	9th month of the year.
April is the	1st month of the year.
May is the	4th month of the year.
June is the	8th month of the year.
July is the	11th month of the year.
August is the the year.	
September is the	12th month of the year.
October is the	3rd month of the year.
November is the	2nd month of the year.

Name:
ordinal numbers
Score:
e:

- -2.0

Which animal is the:
> 1. Fourth -
> 2. Seventh -
> 3. Second -
> 4. Sixth -
> 5. Ninth -
> 6. First -
> 7. Third -
> 8. Tenth -
> 9. Eighth -
> ||islio. EllFMtive-com

17.6 Cardinal numbers

OA. 12
0.8. 18

0418
OD. 14

Numbers: Expanded Form

Write the expanded form of the numbers below,

$$
\begin{aligned}
& 23=20+35=\ldots+ \\
& 17=\int_{+}^{+} \quad 89={ }^{+}+ \\
& 96=\ldots+\quad 42=\ldots+ \\
& 74=\ldots+\quad 68=\ldots+ \\
& 31=\ldots+\quad 26=\ldots+
\end{aligned}
$$

Fill in the numbers to complete each addition sentence.

$$
\begin{aligned}
& =10+2 \\
& \ldots=40+8 \\
& \ldots=90+1 \\
& =50+6 \\
& \begin{aligned}
= & =20+4 \\
= & 70+3 \\
= & 30+7 \\
= & 60+9
\end{aligned}
\end{aligned}
$$

(1)

17.7 Skip counting

Name:

Score :
Date :

Complete the Skip Counting Series

22, 25, 28 , \qquad
\qquad
\qquad
\qquad
30, 33, 36 \qquad
\qquad
\qquad
\qquad
20, 23, 26, \qquad
\qquad
\qquad
\qquad
16, 19, 22, \qquad
\qquad
\qquad
\qquad
15, 18, 21 \qquad
\qquad \longrightarrow $8,11,14$, \qquad
\qquad
\qquad 10

3, 6, 9
12, 15, 18 \qquad
\qquad
\qquad
$23,26,29$ \qquad
\qquad
\qquad
\qquad A: Mathanch Cqum

18. REFERENCE

1. Child craft. 1987. Mathemagic. Volume 10. World Book Australia. New South Wales.
2. Child craft. 1987. Stories and Poems. Volume 1. World Book Australia. New South Wales.
3. Clements, D.H. \& Sarama, J. 2010. Learning trajectories in early mathematics - sequences of acquisition and teaching
4. Gardner, H. 1995. Multiple intelligences as a catalyst. English Journal, 84(8): 16-18.
5. Ginsburg, H \& Ertle, B. 2008. Knowing the mathematics in early childhood mathematics. In Saracho, O.N. \& Spodek, B. (Eds), Contemporary perspectives on mathematics in early childhood education. Charlotte, NC: Information Age Publishing.
6. https//www.google.co.za/url?sa=1\$rct=j\&g.
7. https//www/google/co.za/imgurl=https//media.cheggcdn.com/media6d9
8. Naude M \& Meier C (eds). 2016. Teaching Foundation Phase Mathematics. A guide for South African students and teachers.
