SEISMICITY OF A MECHANICAL MODEL OF EARTHQUAKE: LESSONS FROM ANHARMONIC ELASTIC FORCES

Dikandé Alain Moïse
Laboratory of Research on Advanced Materials and Nonlinear Sciences (LaRAMaNS), University of Buea (Cameroon)

"DFG-AIMS workshop", Rwanda, 20-25 March 2018
OUTLINES

I. LARAMANS IN BRIEF...

II. EARTHQUAKES AND FAULTS: WHAT THEY ARE

II. THE BURRIDGE-KNOPOFF (BK) MODEL

III. "PHYSICS" OF THE BK MODEL

IV. DYNAMICS OF THE BK MODEL

V. ANHARMONIC ELASTIC FORCE

IV. SUMMING UP...
LaRAMaNS is a research team in the Physics Department of the University of Buea. Our current activities focus on Condensed Matter Physics and Nonlinear Sciences, with a wide-range interest in these fields.

Current members of the team include:

- 8 senior members (Pr. Moukam Kakmeni, Dr. Mkam Tchouobiap, Dr. Atoneche Fred, etc.)
- 25 postgraduate students (17 M.Sc. students and 8 Ph.D. students)
- Group’s blog: http://laramans.blogspot.com/
I. LARAMANS IN BRIEF...
II. EARTHQUAKES AND FAULTS: WHAT THEY ARE
III. "PHYSICS" OF THE BK MODEL
IV. DYNAMICS OF THE BK MODEL
V. ANHARMONIC ELASTIC FORCE
IV. SUMMING UP...

The group

Some pictures
I. LARAMANS IN BRIEF...
II. EARTHQUAKES AND FAULTS: WHAT THEY ARE
III. "PHYSICS" OF THE BK MODEL
IV. DYNAMICS OF THE BK MODEL
V. ANHARMONIC ELASTIC FORCE
IV. SUMMING UP...

The group

Some pictures
The group

Some pictures
I. LARAMANS IN BRIEF...
II. EARTHQUAKES AND FAULTS: WHAT THEY ARE
III. THE BURRIDGE-KNOPOFF (BK) MODEL
IV. "PHYSICS" OF THE BK MODEL
V. ANHARMONIC ELASTIC FORCE
IV. SUMMING UP...

The group

Some pictures
The group

Some pictures
The group

Some pictures
The group

Research in LaRAMaNS is theoretical (mainly modelling), with a strong component of numerical simulations. In this respect, the group has a fairly equipped simulation lab (with a 6-Rack HP proliant server + several pcs), from grant of the Alexander von Humboldt (AvH) Foundation (20,000 euros).
I. LARAMANS IN BRIEF...

II. EARTHQUAKES AND FAULTS: WHAT THEY ARE

II. THE BURRIDGE-KNOPOFF (BK) MODEL

III. "PHYSICS" OF THE BK MODEL

IV. DYNAMICS OF THE BK MODEL

V. ANHARMONIC ELASTIC FORCE

IV. SUMMING UP...

The group

Some recent inputs from the team:

- E. Nji Nde Aboringong and Alain M. Dikandé: Exciton dynamics in amide-I α-helix protein chains with long-range intermolecular interactions, in press in European Physical Journal e (EPJ E, Springer)
I. LARAMANS IN BRIEF...
II. EARTHQUAKES AND FAULTS: WHAT THEY ARE
III. "PHYSICS" OF THE BK MODEL
IV. DYNAMICS OF THE BK MODEL
V. ANHARMONIC ELASTIC FORCE
IV. SUMMING UP...

The group

The group

- D. Welakuh Mbangheku and Alain M. Dikandé: Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity, Optics Communications 403, 27, 2017.
I. LARAMANS IN BRIEF...
II. EARTHQUAKES AND FAULTS: WHAT THEY ARE
III. "PHYSICS" OF THE BK MODEL
IV. DYNAMICS OF THE BK MODEL
V. ANHARMONIC ELASTIC FORCE
IV. SUMMING UP...

The group

What is Earthquake? simple picture

Earthquakes are usually triggered by a sudden slip on a fault, much like what happens when we snap our fingers. Before the snap we push the fingers together and sideways, and because we are pushing them together, friction keeps them from moving to the side. When we push sideways hard enough to overcome the friction, the fingers move suddenly causing the release of energy in the form of sound waves that travels from the hand to our ears.
An Earthquake occurs the same way: stresses from inside the Earth crust push the two sides of the fault. The friction across the surface of the fault holds the rocks together so they do not slip immediately when pushed sideways. When enough stress has built up within the fault, the rocks slip suddenly thus releasing energy in form of waves travelling through the rocks to cause the shaking felt during Earthquakes.
What is Earthquake? simple picture

Earthquakes happen over an area of the fault called the rupture surface, just as we snap our fingers with the whole area of our fingertip and thumb. However, unlike our fingers, the whole fault plane does not slip at once. The rupture begins at a point on the fault plane called the hypocenter, a point usually deep down on the fault. The epicenter is the point on the surface directly above the hypocenter. The rupture keeps spreading until all the accumulated stress is released.
EARTHQUAKE FAULTS

A fault (or fracture on the outer Earth crust) is a thin zone of crushed rock separating blocks of the earth’s crust. When an Earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other. Faults can be centimeters to thousands of kilometers long. The fault surface can be vertical, horizontal, or at some angle to the surface of the Earth. Faults can extend deep into the Earth and may or may not extend up to the Earth’s surface.
EARTHQUAKE FAULTS

Seismic faults: a low-scale (minor) fault...
EARTHQUAKE FAULTS

Earth’s major Tectonic plates separated by faults:
The assumption that Earthquakes are governed mainly by a competition between the stress and friction, leads to the so-called "stick-slip" picture proposed by Burridge and Knopoff [1]. In this picture one considers the fault zone (i.e. the two sides of the fracture) as the contact plane between two tectonic plates [1, 2, 3].
PHYSICAL MODEL OF EARTHQUAKE

The two sides (faces) of the fault consist of rocks, represented as regularly ordered blocks of finite masses, interconnected by springs and interacting with blocks of the other side also via springs.
2D Mechanical model of Earthquake fault:

(a) Driving Plate

1 2 3 4 5 6 7 8 9 10
A- fault Viscous Region B- fault

(b) Driving Plate
Further simplification leads to the following 1D Mechanical model, so-called Burridge-Knopoff model:
MATHEMATICAL MODEL

Equations of motion for block number i:

\[mX_{itt} = -k_c(X_i - X_{i+1}) - k_c(X_i - X_{i-1}) - k_p(X_i - vt) - F(\dot{X}_i) \]
\[= k_c(X_{i+1} - 2X_i + X_{i-1}) - k_p(X_i - vt) - F(\dot{X}_i), \] (1)

where \(X_i \) is the relative displacement of the \(ith \) block with respect to its equilibrium, and \(v \) is the velocity of uniform displacement of one plate respective to the other.

We can define a new discrete displacement variable say \(U_i = X_i - vt \), such that the above equation can be rewritten:

\[mU_{itt} = k_c(U_{i+1} - 2U_i + U_{i-1}) - k_pU_i - F(\dot{U}_i + v). \] (2)
What is peculiar to the BK model:

1. the springs are of Hooke’s type, hence elastic-only motions are harmonic (i.e. sinusoidal) oscillations.

2. As the stress accumulates, the friction force $F(\dot{U}_i)$ increases to resist the block displacements (stick phase). The friction reaches a finite threshold and then starts decreasing, thus favoring the release of stress (slip phase) consequent upon the slipping of the plates one respective to the other. From what precedes, it is very likely that the frictional force $F(\dot{U}_i)$ should be nonlinear.
MATHEMATICAL MODEL

Velocity-weakening frictional force in the BK model: time series

Time variation of the frictional force: stick and slip phases.
MATHEMATICAL MODEL

Velocity-weakening frictional force in the BK model: force versus velocity.
A LITTLE ABOUT LINEAR STABILITY...

Note that the frictional force in the BK model is defined as [2, 3]:

\[
F(y) = \frac{f_0 \text{sgn}(y)}{1 + \alpha |y|}, \tag{3}
\]

where the constant \(\alpha \) is inversely proportional to \(v \). The system stability is governed by the nonlinear frictional force (3). The friction exhibits a velocity-weakening force, i.e. there exists a range of velocities for which \(\frac{dF(\dot{U}_i + v)}{dU_i} < 0 \). In this range of velocities, a linear stability analysis [3] shows that all Fourier modes will grow exponentially at finite rate, so a small disturbance from equilibrium will be magnified during slipping.
Given a nonuniform initial condition, the system is expected to reach a statistically steady state after a few cycle of "displacive" (or large) events.

How do we define an event?
In general, an event is associated with a collective (not necessarily homogeneous) slipping motion of a connected set of blocks. The total moment M of an event is by definition, the sum of relative displacements $\delta U_i = U_{i+1} - U_i$ of all the blocks i.e. [2, 3]:

$$M = \sum_{i=1}^{\delta U_i}$$ (4)
From the above it appears clearly that having U_i provides key information about the Earthquake event. We will therefore focus on solving eq. (2).
To solve eq. (2), we assume waves are of long wavelength such that the whole fault zone can be regarded as a continuous medium. With this assumption eq. (2) becomes:

$$U_{ss} = \omega_0^2 U + \frac{1}{m} F(U_s + v),$$ \hspace{1cm} (5)

with $s = (a - \vartheta t)\gamma$, $\gamma^{-2} = \vartheta_0^2(1 - \vartheta_0^2/\vartheta^2)$, $\vartheta_0^2 = k_c a^2 / m$. Also $\omega_0^2 = k_p / m$ (S-wave characteristic frequency).
I. LARAMANS IN BRIEF...

II. EARTHQUAKES AND FAULTS: WHAT THEY ARE

III. "PHYSICS" OF THE BK MODEL

IV. DYNAMICS OF THE BK MODEL

V. ANHARMONIC ELASTIC FORCE

IV. SUMMING UP...

SOME DISPLACEMENT AND VELOCITY PROFILES

Displacement profile

Velocity profile

Fig. 3: Profiles of U and U_s versus s for $\alpha = 0.05$, $\omega_0^2 \equiv 1$.
SOME DISPLACEMENT AND VELOCITY PROFILES

Displacement profile

Velocity profile

Fig. 3: Profiles of U and U_s versus s for $\alpha = 0.5$, $\omega_0^2 \equiv 1$.
SOME DISPLACEMENT AND VELOCITY PROFILES

Displacement profile

Velocity profile

Fig.3: Profiles of U and U_s for $\alpha = 1.5$, $\omega_0^2 \equiv 1$.
Why Anharmonic Elastic Force?

Harmonic force between tectonic plates means in the absence of friction, the plates oscillate "sinuzoidally" one with respect to the other. Such harmonic motions would be valid regardless of the amplitude of block displacements. On the contrary, anharmonic force means a stronger interaction between plates. Moreover, with anharmonic force harmonic oscillations will be confined at very small block displacements. Here we shall consider a quartic anharmonic potential providing the anharmonic force i.e.:

\[V(U_i) = \frac{k_c}{2} U_i^2 + \frac{\beta}{4} U_i^4, \]

(6)

Symmetry requirements imply that \(V(U_i) = V(-U_i) \).
THE ANHARMONIC POTENTIAL AND FORCE

Anharmonic potential

Anharmonic force

Fig.3: Profiles of U and U_s for $\alpha = 1.5$, $\omega_0^2 \equiv 1$.
DYNAMICS OF BK MODEL WITH ANHARMONIC ELASTIC FORCES

With the anharmonic force, the discrete equation (2) becomes:

\[mU_{itt} = k_c(U_{i+1} - 2U_i + U_{i-1}) - k_p(1 + \frac{\beta}{k_c}U_i^2)U_i - F(\dot{U}_i + v). \] (7)

The above equation can be seen as the one of a discrete set of harmonic oscillators, with a "displacement-dependent" stiffness \(k_2(1 + \beta U_i^2) \). In the continuum limit (\(\beta_0 = \beta/\omega_0^2 \)):

\[U_{ss} = \omega_0^2(1 + \beta_0 U^2)U + \frac{1}{m}F(U_s + v). \] (8)
I. LARAMANS IN BRIEF...

II. EARTHQUAKES AND FAULTS: WHAT THEY ARE

II. THE BURRIDGE-KNOPOFF (BK) MODEL

III. "PHYSICS" OF THE BK MODEL

IV. DYNAMICS OF THE BK MODEL

V. ANHARMONIC ELASTIC FORCE

IV. SUMMING UP...

SOME DISPLACEMENT AND VELOCITY PROFILES

Displacement profile

Velocity profile

Fig. 3: Profiles of U and U_s for $\alpha = 0.05$, $\beta_0 = 0.1$, $\omega_0^2 \equiv 1$.
SOME DISPLACEMENT AND VELOCITY PROFILES

Fig. 3: Profiles of U and U_s for $\alpha = 0.5$, $\beta_0 = 0.1$, $\omega_0^2 \equiv 1$.
Fig. 3: Profiles of U and U_s for $\alpha = 1.5$, $\beta_0 = 0.1$, $\omega_0^2 \equiv 1$.

SOME DISPLACEMENT AND VELOCITY PROFILES
MAIN LESSONS FROM ANHARMONICITY

- Anharmonic inter-plate interactions give rise to smaller amplitudes of block displacements and velocities, due to a stronger elastic stress resisting the friction.

- The displacement and velocity profiles are always anharmonic, even for small values of the anharmonicity constant β. Therefore, only for very strong friction a rupture between the plates can induce their slip and hence an Earthquake.
MAIN LESSONS FROM ANHARMONICITY

- When the frictional force is zero the anharmonic elastic force will govern the system dynamics. Namely it prevents blocks from oscillating harmonically, instead the blocks will "rattle" as a consequence of a relatively broad bottom of the anharmonic potential in which they can perform large excursion without leaving their equilibrium states.

- From the standpoint of fundamental physics, the consideration of an anharmonic force between tectonic plates enriches the system dynamics with new displacement and velocity patterns with soliton features, including kinks, pulses, and so on.
For (arbitrarily) very small values of α, the ”anharmonic” BK model can be readily approximated by a discrete set of coupled Duffing oscillators with a constant drive i.e.:

$$mU_{itt} = k_c(U_{i+1}-2U_i+U_{i-1}) - k_p(1+\frac{\beta}{k_p}U_i^2)U_i + \alpha_0 |\dot{U}_i| - F(v),$$

where $\alpha_0 = \alpha f_0$.

(9)
Some references

Some references
