An Approach to the Child with Recurrent Respiratory Tract Infections

Synopsis

Introduction
Defining RRTI
Etiological approach
Creche syndrome
Conclude

Introduction

• A common problem.
• Cough, phlegm & fever causes concern.
• Socio-economic status defines severity rather than frequency of ARI’s.
• Preventative measures not appealing.
• No instant cures.
• Doctors often perceived as inefficient.

Introduction

RRTI’s: Frustrating parents

• 33% of all Paediatrician visits:
 – Time consuming & demanding.
 – Close attention to history & clinical examination.
 – Possible extensive investigations.
• Lack of evidence & guidelines.
• Wide differential diagnosis.
• Most patients actually “normal” but you should not miss a sinister diagnosis.

When to investigate? & When to stop?
An Approach to the Child with RRTI's

Synopsis

Introduction
Defining RRTI
Etiological approach
Crèche syndrome
Conclude

Defining RRTI's

In practice

- RTI's too great in number.
- RTI's that are too severe.
- RTI's that last too long.
- RTI's fail to resolve with standard therapy.
- RTI's associated with complications.

A matter of good clinical judgment!

Defining RRTI's

No consensus on defining RRTI's

- Viral colds: ≥ 15 p.a.
- Tonsillitis: ≥ 7 in one year • ≥ 5 p.a. in 2 consecutive years
 Or ≥ 3 p.a. in 3 consecutive years.
- OM: ≥ 3 in 6 months • ≥ 4 in 12 months.
- Acute sinusitis: Recurrent or ≥ 2 p.a. requiring IV antibiotics.
- Croup: Recurrent severe episodes of croup.
- Pneumonia: Hospital admission ≥ 2 p.a. • ≥ 3 in total.
 Or ≥ 2 episodes of radiologic shadowing.
- Chronic symptoms: Need for antibiotics ≥ 60 days p.a.
 Or chronic colored sputum & mucus.
 Or cough > 4 weeks (ACCP) / 8 weeks (BTS).

Take parental concern into account!

An Approach to the Child with RRTI's

Synopsis

Introduction
Defining RRTI
Etiological approach
Crèche syndrome
Conclude

Etiological approach

Three main reasons to RRTI's

1. “Normal” child with recurrent ARI’s.
2. Immune dysregulation:
 - “Over active” – classic allergy.
 - “Under active” – Immunodeficiency.
Etiological approach

Goals of an etiological approach

1. To identify the “normal” child, with just more than the usual number of infections, avoid unneeded investigations & treatment, & to pacify the mother.
2. To identify & treat the allergic child correctly.
3. Not to miss the child with a more sinister underlying problem, to prevent unneeded suffering & irreversible complications.

Etiological approach

Main reasons to RRTI’s

- 50% “Normal”
- 30% Allergy
- 10% PID
- 10% Non-immune chronic disease

Etiological approach

“Normal” child with RRTI’s

- 50% “Normal”
- 30% Allergy
- 10% PID
- 10% Non-immune chronic disease

Etiological approach

“Normal” child with RRTI’s

- Expect recurring ARI’s (especially URTI’s) in children:
 - 3-6 p.a. (Simoes E et al. World Bank, 2006)

- Mostly mild, self-limiting & caused by viruses.
- Increase 2-8 fold with early larger group exposure.
- Symptom duration 8 days (mean) to 14 days per infection & 10% will still cough at d25.

A normal child with 10 ARI’s p.a. can be symptomatic for 8 month of the year!

Etiological approach

“Normal” child with RRTI’s

- Support for a “normal” child with recurring ARTI’s:
 - Expected duration to recovery.
 - Complete recovery between episodes.
 - Normal physical examination with no clinical features of underlying other chronic illness.
 - Normal growth & development.
 - No other system involvement.
 - ? Munchausen syndrome by proxy.

Context is crucial!

Etiological approach

The allergic child with RRTI’s

- 50% “Normal”
- 30% Allergy
- 10% PID
- 10% Non-immune chronic disease
Etiological approach

The allergic child with RRTI’s

- Allergic rhinitis & comorbidities can be misdiagnosed as viral infection.
- Asthma can be misdiagnosed as LTRI’s.
- Allergic children suffer increased susceptibility to infection:
 - Enhanced adherence of pathogens to inflamed epithelium.
 - Increased mucosal permeability.
 - Altered immune response to pathogens.

Etiological approach

The PID child with RRTI’s

- Co-existing allergy in 31% of PID children.
- PID & allergy:
 - sIgA deficiency.
 - CVID.
 - CGD.
 - DiGeorge.
- Elevated IgE in:
 - Hyper IgE syndrome.
 - WAS.
 - Omenn.
 - IPEX.

Etiological approach

Blurring the edges between allergy & PID

- Secondary immunodeficiency:
 - HIV.
 - Diabetes mellitus.
 - Malignancy.
 - Immunosuppressive medication.
 - Protein losing conditions.

Etiological approach

The child with an immunodeficiency

- Secondary immunodeficiency:
 - HIV.
 - Diabetes mellitus.
 - Malignancy.
 - Immunosuppressive medication.
 - Protein losing conditions.

Etiological approach

The child with PID

- PID most frequently presents with RRTI’s.
- Not rare:
 - Incidence vary from 1:300.
 - Prevalence of 1:2,000 in population based USA study. (Boyle et al. J Clin Immunol 2007; 27:497)
- PID pictures:
 - B-cell abnormalities (50-65%)
 - T-cell abnormalities (20-30%)
 - Phagocyte deficiencies (18%)
 - Complement deficiencies (2%)
Etiological approach

Indicators of possible PID

Severe, persistent, unusual & recurrent infections

Common associations:
- Chronic mucopurulent secretions.
- Allergy.
- Persistent lymphopenia.
- Lethargy & absenteeism.
- FTT.
- Recurrent diarrhoea.
- Skin & soft tissue infections.
- Two or more episodes of sepsis or meningitis.
- Syndromic features.
- Family history.
- Complications from a live vaccine.
- Auto-immune disease (adults).

Common associations:
- Selective IgA deficiency:
 - Cannot be diagnosed < 4 years of age.
- IgG subclass deficiency:
 - Lack of ≥1 IgG subclasses with ≥ normal IgG, on 2 occasions while infection free, & inadequate vaccine responses.
- Transient hypogammaglobulinemia of infancy:
 - Decreased IgG with normal vaccine responses.
- Specific antibody deficiency:
 - Most common PID with recurrent sinupulmonary infections.
 - Cannot be diagnosed in children < 2 years of age.
- CVID:
 - Not uncommon but difficult to diagnose in preschool children.

Selecting IgA deficiency:
- Cannot be diagnosed < 4 years of age.
- IgG subclass deficiency:
 - Lack of ≥1 IgG subclasses with ≥ normal IgG, on 2 occasions while infection free, & inadequate vaccine responses.
- Transient hypogammaglobulinemia of infancy:
 - Decreased IgG with normal vaccine responses.
- Specific antibody deficiency:
 - Most common PID with recurrent sinupulmonary infections.
 - Cannot be diagnosed in children < 2 years of age.
- CVID:
 - Not uncommon but difficult to diagnose in preschool children.

The child with non-immune chronic disease

Ineffective mucus clearance:
- CNS abnormality.
- CF.
- PCD.
- Obstruction:
 - Eustachian tube dysfunction.
 - Sinus ostia obstruction.
 - T&A hypertrophy.
 - Airway malacia & stenosis.
 - Lymph nodes & tumors.
 - Foreign body.
 - Vascular rings.
 - CVS abnormalities with increased pulmonary blood flow.
 - Congenital abnormalities.
 - Chronic & resistant pathogens:
 - TB.
 - MRSA, PBP, lactam etc.
 - Continuous re-infection.
 - Irritant exposure:
 - Cigarette smoke.
 - GORD.

The child with non-immune chronic disease

Synopsis

Introduction
Defining RRTI
Etiological approach
Crèche syndrome
Conclude
A medical syndrome?

- Pubmed search:
 - About 4 results after 1 minute.
- www.uptodate.com:
 - No results.
- Google search:
 - About 5,560,000 results in 0.55 seconds.

Clinical features according to Dr Google

- “Exhausting roller coaster ride of never ending (airway) infections that starts on entry to crèche.”
- Chronic cough, phlegm production and lack of sleep.
- “Medical experts believe that it results from repeated attacks on the vulnerable & developing immune system.”
- Repeated doctor visits result in bankruptcy, repeated prescriptions for antibiotics, cortisone & other medication that does not help.
- Best to boost the immune system with omegas, vitamin supplements, propolis & probiotics.

Etiology?

- Multifactorial & a composite:
 - Exposure to infections.
 - Immune incompetence.
 - Pathogen resistance.
 - Nutrient deficiency.
 - Energy depletion.
 - Medication side-effects.
 - Irritant exposure.
 - Allergy.

Are we missing the elephant in the room?

Biofilm

- Bacteria embedded in a polysaccharide matrix attached to a solid surface.
- Colonizing polysaccharide capsulated bacteria.
- Polysaccharide matrix forms a functional barrier against:
 - Phagocytosis.
 - Antibody & complement exposure.
 - Antibiotic penetration.

Protracted bacterial bronchitis: a biofilm disease

- Usually young children <5 yrs.
- Persistent cough (>4 weeks):
 - “Wet” cough on reclining & early morning. May last the whole night.
 - “Out of breath” during coughing episodes.
 - Often worse during exercise.
 - Often coloured sputum.
- Responds to antibiotic therapy.
- Associated:
 - “Noisy chest” with chest rattles.
 - Other airway biofilm disease.

Protracted bacterial bronchitis (PBB)

- Persistent infection of conducting airways by low colony count pathogenic bacteria:
 - NTHi.
 - Streptococcus pneumoniae.
 - Moraxella catarrhalis.
 - Often associated & exacerbated by viruses infections.
- Viral infection followed by polysaccharide capsulated bacteria?
- Colonisation after Caesarian section?
- Polysaccharide nonresponsive children are sent to crèche at young age?
Crèche syndrome

Protracted bacterial bronchitis

- Treatment:
 - Prolonged antibiotic courses.
 - Based on sensitivity.
- Differential diagnosis of PBB:
 - Asthma.
 - Foreign body aspiration.
 - Cystic fibrosis.
 - Bronchiectasis.

"Undoubtedly a real & important entity."

Crèche syndrome

An Approach to the Child with RRTI’s

Synopsis

- Introduction
- Defining RRTI
- Etiological approach
- Crèche syndrome
- Conclude

An Approach to the Child with RRTI’s

Conclude

RRTI represents a very common & challenging problem in private paediatric medicine.

An Approach to the Child with RRTI’s

Conclude

Clinical judgement & experience remains crucial in current management.

An Approach to the Child with RRTI’s

Conclude

The current lack in evidence & a dire need for guidelines should be addressed.

An Approach to the Child with RRTI’s

Conclude

Sound definitions & approach plans will benefit patients, doctors & parents!
An Approach to the Child with RRTI's

Conclude

Key to not over-investigate or over-treat, while also not allowing long term harm.

An Approach to the Child with RRTI's

Conclude

Take note of the emerging science of biofilm disease & chronic airway colonization with polysaccharide capsulated pathogens.

Conclude

Main reasons to RRTI

- 50% "Normal"
- 30% Allergy
- 10% PID
- 10% Non-immune chronic disease

An Approach to the Child with RRTI's

Conclude

Thanking you!

23rd Annual Congress of the Allergy Society of South Africa

6 – 8 August 2014

Elangeni Hotel, Durban

REGISTER NOW!!!