
N = 1 theories Vishnu Jejjala

Lecture 1

1. According to the Standard Model of particle physics, matter is constituted out of leptons and

quarks. These particles have half integer spin and therefore enjoy fermionic statistics. Forces

are mediated by the photon (QED), the W± and Z (weak force), the gluons (QCD, or the

strong interaction), and the Higgs field, which endows particles with mass. All the force carriers

are bosons. They have integer spin. Supersymmetry is a conjectured symmetry of Nature that

posits that for every bosonic degree of freedom, there is fermionic degree of freedom and vice

versa. In unbroken supersymmetry, each particle has a superpartner that is mass degenerate

and whose spin differs by 1
2 . All of the other quantum numbers are the same.

The superpartner of the electron field is the selectron or scalar electron field (spin-0), while the

superpartner of the photon field is the photino field (spin-1
2). Since we do not see a massless

photino or a selectron with mass 0.511 MeV, supersymmetry, if it exists, is broken in Nature.

2. We should ask ourselves: why supersymmetry? The Coleman–Mandula no go theorem demon-

strates that the S-matrix of a quantum field theory only allows spacetime and internal symme-

tries to be combined in a trivial manner. The conserved quantities are the generators of the

Poincaré group and Lorentz scalars. Supersymmetry evades the Coleman–Mandula theorem

by introducing additional generators of symmetries, the supercharges, which are spinors. The

Poincaré algebra is enhanced to a Lie superalgebra. Notably, in (3 + 1)-dimensions, we have

{Qα, Qβ̇} = 2 (σµ)αβ̇ Pµ , Pµ = −i∂µ , (1)

where Qα and Qβ̇ are fermionic generators with indices that run from 1, 2. Roughly speaking,

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 . (2)

From the perspective of particle physics, supersymmetry addresses the gauge hierarchy problem

and presents WIMP candidates for the dark matter that comprises some 27% of the energy

density in the visible Universe.

The Higgs potential resembles a Mexican hat:

V (φ) = −µ(Λ)2φ†φ+ λ(Λ)(φ†φ)2 . (3)

The couplings are a function of the energy scale at which we probe the theory. The field achieves

its minimum not at zero but at

〈φ〉 ≈ µ(0)√
2λ(0)

(4)

for energies much smaller than the ultraviolet cutoff Λ. For λ ∼ 1, the renormalized mass

µ(0) ∼MEW ∼ 102 GeV. The electroweak scale is where SU(2)L × U(1)Y is broken to U(1)EM

by the Higgs effect. We may compute µ(0) from the Feynman diagrams in Figure 1.

Figure 1: One loop Higgs mass renormalization.
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Each of the diagrams corresponding to radiative corrections is quadratically divergent. We find

that

µ2(0) = µ2(Λ) + Λ2(c1λ(Λ) + c2g
2(Λ) + . . .) . (5)

Because the Standard Model is an effective theory, we must integrate in physics as we approach

the cutoff. Let’s suppose new physics enters at Λ = MX ∼ 1016 GeV, corresponding, say, to the

grand unification scale. Then

µ2(0)

M2
X

=
µ2(MX)

M2
X

+ (c1λ(MX) + c2g
2(MX) + . . .) ∼ 10−28 . (6)

There is a scarcely credible, highly unnatural fine tuning between the bare mass and the radiative

corrections to accomplish this detailed cancellation. What physics explains why the electroweak

scale is so much smaller than the fundamental scale in the theory? This is the gauge hierarchy

problem.

We know that fermionic loops have a minus sign relative to bosonic loops. Invoking supersym-

metry, we have, for example, the Feynman diagrams in Figure 2 involving top quarks and their

stop superpartners. These diagrams exactly cancel! In fact, with soft supersymmetry breaking,

we do not encounter ultraviolet divergences in scalar masses.

Figure 2: The top and stop one loop diagrams cancel.

While there are hundreds or perhaps thousands of putative models, the mechanism Nature

actually employs remains elusive. If R-parity is a symmetry of a supersymmetric extension of

the Standard Model, the lightest superpartner is stable. This provides a candidate for weakly

interacting cold dark matter. To date, there is no observational evidence for supersymmetry

at the scales accessible to experiments. In the absence of supersymmetry, some degree of fine

tuning may be necessary.

3. Let us promote the standard coordinates to superspace:

xµ → (xµ, θα, θα̇) . (7)

Note that θ and θ are Grassmann quantities. This means, for example, that

θαθβ = −θβθα . (8)

Integration over θ, θ is the same as differentiation.

We define the covariant derivatives and supercharges as follows:

Dα =
∂

∂θα
+ i (σµ)αα̇ θ

α̇
∂µ , Dα̇ = − ∂

∂θ
α̇
− iθα (σµ)αα̇ ∂µ , (9)

Qα =
∂

∂θα
− i (σµ)αα̇ θ

α̇
∂µ , Qα̇ = − ∂

∂θ
α̇

+ iθα (σµ)αα̇ ∂µ . (10)
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The supersymmetry generators Q and Q define the supertranslations

(xµ, θα, θα̇)→ (xµ + iθσµξ − iξσµθ, θα + ξα, θα̇ + ξα̇) , (11)

where we have suppressed some indices in the obvious way. By acting on test functions, we

deduce that

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 , {Qα, Qα̇} = 2 (σµ)αα̇ Pµ . (12)

The covariant derivatives also anticommute with the supersymmetry generators.

The minimal supersymmetry theory in four dimensions, so called N = 1 supersymmetry, has

four supercharges. Extended supersymmetry comes in different varieties: N = 2, which has

eight supercharges, and N = 4, which has sixteen supercharges. We have the algebra

{QIα, QJβ} = CαβZ
IJ , {QIα̇, Q

J
β̇} = Cα̇β̇Z

IJ
, {QIα, Q

J
α̇} = 2 (σµ)αα̇ Pµδ

IJ , (13)

where we have introduced central charges. In extended theories, there is a non-Abelian R-

symmetry that lets us rotate the charges into each other. The maximal N = 4 super-Yang–Mills

theory has a massless vector field, four Weyl fermions, and six scalars. This is secretly a theory

of gravity and represents an entry into a vast subject known as the AdS/CFT correspondence.

We should think of superfields as functions on superspace. As the Grassmann variables anti-

commute, the Taylor expansion terminates, and we can write a general superfield as

Φ(x, θ, θ) = φ+ θψ + θχ+ θ2F + θ
2
G+ θσµθAµ + θ2θλ+ θθ

2
ζ + θ2θ

2
D . (14)

Counting parameters, we have bosonic variables φ(x), F (x), G(x), Aµ(x), and D(x) along with

fermionic variables ψ(x), χ(x), λ(x), and ζ(x). The latter are two component Weyl spinors, so

in total there are eight bosonic degrees of freedom and eight fermionic degrees of freedom.

A chiral superfield is one for which

Dα̇Φ = 0 . (15)

We notice that Dα̇ kills θα and also yµ = xµ + iθσµθ. Thus,

Φ = Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y)

= φ+ iθσµθ∂µφ+
1

4
θ2θ

2
∂2φ+

√
2θψ − i√

2
θ2∂µψσ

µθ + θ2F . (16)

Similarly, we define antichiral superfields as those for which DαΦ = 0.

4. Consider a functional K(Φ,Φ). Suppose we define a metric by taking derivatives with respect

to the scalar components of the chiral and antichiral superfields:

gmn = ∂m∂nK(φm, φ
n
) , ∂m =

∂

∂φm
, ∂n =

∂

∂φ
n
. (17)

Given this metric, we may construct a Levi-Civita connection and from there the Riemann

tensor. Then, on shell,

L ⊃
∫
d4θ K = −gmn∂µφm∂µφ

n − igmnψ
n
σµDµψ

m +
1

4
Rmnpqψ

mψpψ
n
ψ
q
, (18)

where

Dµψ
m = ∂µψ

m + Γmnp∂µφ
pψn . (19)

The functional K(Φ,Φ) is the Kähler potential. It yields the kinetic terms for the component

superfields. Note that there is no kinetic term for F ; this is an auxiliary field that we can

eliminate using the equations of motion. For renormalizable theories, we take K(Φ,Φ) = ΦiΦ
i.
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5. A vector superfield V is real: V † = V . In Wess–Zumino gauge, we may write

V (x, θ, θ) = −θσµθAµ(x) + iθ2θλ(x)− iθ2
θλ(x) +

1

2
θ2θ

2
D(x) . (20)

The vector field Aµ(x) = Aaµ(x)T a is an element of the Lie algebra g corresponding to the gauge

group G. Gauge transformations act as

V → V + Λ + Λ , (21)

where Λ is any chiral superfield. Chiral and antichiral superfields with charge q transform as

Φ→ eqΛΦ , Φ→ eqΛΦ . (22)

Using V , we may define

Wα = −1

4
D

2
(e−VDαe

V ) , W α̇ =
1

4
D2(eVDα̇e

−V ) . (23)

The expression

L ⊃ Im

[
τ

(∫
d2θ tr(WαWα) +

∫
d2θ tr(W α̇W

α̇
)

)]
, τ =

ϑ

2π
+ i

4π

g2
YM

(24)

recovers trF 2, the gauge kinetic term, and trFF̃ , the term proportional to the ϑ-angle.

6. Interactions arise from the superpotential. This is a holomorphic function of the chiral super-

fields. We have

L ⊃
∫
d2θ W (Φ) + h.c. . (25)

Due to the power of holomorphy, we can apply our complex analysis toolkit to work with

supersymmetric quantum field theories. Crucially, the superpotential W is not perturbatively

renormalized. Non-perturbative effects such as instanton corrections may enter.

According to the Coleman–Mandula theorem, any global symmetry must commute with the

Poincaré algebra. Global symmetries need not commute with the supersymmetry generators,

however. We can have an R-symmetry:

[R,Qα] = −Qα , [R,Qα̇] = Qα̇ . (26)

Because the R-symmetry does not commute with Q and Q, the component fields have different

R-charges. Thus, for a chiral superfield

R(φ) = r , R(ψ) = r − 1 , R(F ) = r − 2 . (27)

We label the R-charge of Φ with the R-charge of the lowest component of the superfield. We as

well assign an R-charge +1 to θα and −1 to dθα. We require that terms in the superpotential

have R-charge +2.

7. The Wess–Zumino model is an example of an interacting four dimensional supersymmetric

quantum field theory. It has the Lagrangian density

L =

∫
d4θ ΦiΦ

i +

∫
d2θ

(
νiΦ

i +
1

2
mijΦ

iΦj +
1

3!
λijkΦ

iΦjΦk

)
+ h.c. . (28)
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For convenience, we will assume that we can shift the fields so that we remove the tadpoles.

Notice that if the fields Φi have R-charge +1, the coupling λ has R-charge −1.

Let us restrict to the case where there is a single complex scalar field. In components, we can

write the Lagrangian in terms of a scalar A, a pseudoscalar B, and a four component Majorana

(real) spinor ψ:

LWZ = Lkin + Lmass + Lint , (29)

Lkin =
1

2
∂µA∂

µA+
1

2
∂µB∂

µB +
1

2
ψ∂/ψ , (30)

Lmass =
1

2
m2A2 +

1

2
m2B2 +mψψ , (31)

Lint = λ

(
ψ(A−Bγ5)ψ +

1

2
λ(A2 +B2)2 +mA(A2 +B2)

)
. (32)

Exercises

• Starting from the supersymmetry algebra, show that the energy of any state is non-

negative. Usually, we can set the zero point of energy where we like and measure the

energies of states relative to this reference. Why is this not what we do in a theory with

supersymmetry?

• What are the scaling dimensions of the various component superfields in the Wess–Zumino

model?

• Suppose

L = ∂µφ
∗∂µφ+ iψ†σµ∂µψ . (33)

Show that this changes only by a total derivative under the transformation:

δεφ = εαψα = εψ ,

δεψα = −i(σµε†)α∂µφ , (34)

δεψ
†
α̇ = i(εσµ)α̇∂µφ

∗ ,

where ε is an infinitesimal spinor.

• Show that the action SWZ =
∫
d4x LWZ is invariant under supersymmetry transformations

δεA = εψ ,

δεB = εγ5ψ , (35)

δεψ =
[
∂/−m− λ(A+Bγ5)

]
(A+Bγ5)ε ,

with ε a constant Majorana spinor.

• Show that the superpotential W = 1
2mΦ2 + 1

3!λΦ3 is not renormalized.
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Lecture 2

8. Since [Pµ, Qα] = 0, it follows that [P 2, Qα] = 0. This means that any two states |ψ〉 and

Qα|ψ〉 = |χ〉 are mass degenerate.

From

{Qα, Qβ̇} = 2(σµ)αβ̇Pµ , (36)

we conclude that

δαβ̇〈ψ|{Qα, Qβ̇}|ψ〉 =
∑
α̇

〈ψ|(Qα̇)†Qα̇|ψ〉+
∑
α

〈ψ|(Qα)†Qα|ψ〉

=
∑
α̇

||Qα̇|ψ〉||2 +
∑
α

||Qα|ψ〉||2 ≥ 0 (37)

= 2δαβ̇(σµ)αβ̇〈ψ|Pµ|ψ〉 = 4〈ψ|P0|ψ〉 = 4E|| |ψ〉||2 . (38)

We realize that E ≥ 0 for any state |ψ〉 in a supersymmetric theory. The inequality saturates

if and only if Qα|ψ〉 = Qα̇|ψ〉 = 0.

The supersymmetric ground state is invariant under the action of any of the supersymmetry

generators. In global supersymmetry, the expectation value of the energy of the ground state

therefore serves as an order parameter for the existence of supersymmetry.

9. Recall from last time that a chiral superfield has the expansion

Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y) , (39)

with components that shift in terms of a constant Weyl spinor ε as

δφ =
√

2εψ , δψ =
√

2εF + i
√

2σµε∂µφ , δF = i
√

2εσµ∂µψ . (40)

The kinetic term for the chiral fields is

Lkin =
∑
i

(
∂µφ

∗i∂µφi − i

2
ψ
i
σµ∂µψ

i + F ∗iF i
)
. (41)

The superpotential is integrated over half of superspace. Isolating the terms that have θ2, we

find

LW =
∑
i

∂W

∂Φi
F i +

∑
i,j

∂2W

∂Φi∂Φj
ψiψj . (42)

The Euler–Lagrange equation tells us that

F ∗i = −∂W
∂Φi

. (43)

Substituting the equation of motion for the auxiliary field F back into the Lagrangian, we see

that the potential contains the F -terms,

V ⊃
∑
i

|F i|2 =
∑
i

∣∣∣∣∂W∂Φi

∣∣∣∣2 . (44)

There is an F -term for each chiral superfield Φi that appears in the superpotential.
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Similarly, from the vector superfield, the Lagrangian incorporates the following structure:

L ⊃
∑
a

(
1

2g2
(Da)2 +Da

∑
i

φ∗iT aφi

)
. (45)

From here, we derive an equation of motion for the auxiliary field D:

Da = −g2
∑
i

φ∗iT aφi . (46)

The potential becomes

V (φ) =
∑
i

|F i|2 +
∑
a

(Da)2 . (47)

The second term in (47) is the D-term. Notice that there is a D-term for each generator

of the gauge group G. In case the gauge group contains a U(1) factor, we can include the

Fayet–Iliopoulos term

LFI = ξ

∫
d4θ V . (48)

We have the D-term

D = ξ +
∑
i

qiφ
∗iφi . (49)

Since the energy is zero within a supersymmetric vacuum, we require that

F i = 0 , ∀i , (50)

Da = 0 , ∀a . (51)

In general, there is more than one solution to these equations. The set of field configurations

{〈φi〉} that satisfy the F -term equation (50) and D-term equation (51) defines the moduli space

of vacua of the N = 1 supersymmetric gauge theory.

10. An orbifold of a space is an identification of points related by the linear action of a discrete

group. As a first example, the complex number z = x + iy defines a point on the plane with

coordinates (x, y). Let us identify the points z and −z. This is the orbifold C/Z2. The only

point that is invariant under the action of the orbifold is z = 0. Another Z2 identification may

be z ∼ z. Here, the fixed points of the orbifold are the real numbers.

As a slightly more complicated example, consider the torus T2. We start with a lattice defined

by the unit vector x̂ and the vector ~τ in the complex plane. The torus identifies the points

z ∼ z +m+ nτ , m, n ∈ Z . (52)

The fundamental domain is a unit cell as shown in Figure 3.

Let us choose the complex structure so that we tesselate the complex plane C by a fundamental

domain defined by τ = e
2πi
3 . Take three copies of this torus to construct a T6. A point on T6 is

then specified by three complex numbers (z1, z2, z3) which reside in the fundamental domain.

The group Z3 consists of the cubed roots of unity: Z3 = {1, ω3, ω
−1
3 }. We take the orbifold

T6/Z3 by defining the map

γ : (z1, z2, z3) 7→ (ω3z1, ω3z2, ω
−2
3 z3) (53)
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Figure 3: A torus with complex structure τ and area A. The complex structure describes the

shape of the torus while the Kähler modulus describes its size.

and identifying a point with its image: p ∼ γ(p). In order to emphasize that the product of the

phases acting on the coordinates is unity, we write the third phase in (53) as ω−2
3 instead of ω3.

There are 33 = 27 fixed points under the action of the orbifold group. To be explicit,

ω3 · 0 = 0 ,

ω3 ·
1√
3
e
πi
6 =

1√
3
e

5πi
6 ∼ 1√

3
e
πi
6 − 1 ∼ 1√

3
e
πi
6 , (54)

ω3 ·
2√
3
e
πi
6 =

2√
3
e

5πi
6 ∼ 2√

3
e
πi
6 − 2 ∼ 2√

3
e
πi
6 .

Obviously, these same points are invariant on multiplication by ω2
3 = ω−1

3 and ω3
3 = 1. Locally,

each fixed point is of the form C3/Z3.

Orbifolds are not smooth spaces. There are conical singularities at fixed points of the Z3 orbifold

action. This is drawn in Figure 4.

Figure 4: The space near a fixed point of a Z3 action on T2.

The Hilbert space of states for point particles on X6 consists of those states that are invariant

under γ. That is to say, we restrict to wavefunctions that enjoy the property that

ψ(zi) = ψ(ω3zi) . (55)

The operator

P =
1

3
(1 + γ + γ2) (56)
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projects the Hilbert space of states on T6 to the Hilbert space of states on X6. If we consider

the sigma model on the closed string worldsheet, to account for the orbifold identification, we

should augment the spectrum with twisted sector states:

(xµ(σ + 2π), zi(σ + 2π)) = (xµ(σ), ωki3 zi(σ)) , ki = 0, 1, 2 , (57)

where the coordinates (xµ, zi) describe the embedding in spacetime.

We may generalize the construction to X6 = T6/Zn. The n-th roots of unity are ωkn = e
2πik
n ,

k = 0, . . . , n− 1. A Zn action on the coordinates of T6 is

(z1, z2, z3) ∼ (ωanz1, ω
b
nz2, ω

c
nz3) . (58)

Except at the singularities associated to the fixed points, X6 is a flat six dimensional geometry.

It is an interesting open problem to classify all of the inequivalent orbifold actions on the

coordinates of Cm by elements of a discrete group.

Superstring theory is a consistent theory of quantum gravity in 9+1 dimensions. The spectrum

of the superstring includes solitionic objects called D-branes. A Dp-brane extends in p spatial

dimensions and defines a submanifold in spacetime on which open strings end with Dirichlet

boundary conditions. Suppose we place D3-branes at a singular point on the orbifold X6. There

is a low energy effective theory on the worldvolume of the brane. The theory preserves N = 1

supersymmetry if we enforce the constraint in (58) that a + b + c = 0 mod n. This is the

Calabi–Yau condition for a local Abelian orbifold.

11. The cone over a Sasaki–Einstein base B is a Calabi–Yau geometry. The worldvolume gauge

theory for N D3-branes at the tip of the cone is an N = 1 theory that is dual to string theory

on AdS5×B. The gauge theories corresponding to these singularities have bifundamental matter

and a product gauge group

G =
n∏
i=1

Gi . (59)

Each of the factors Gi is a U(N) group. A chiral superfield Φi
jk transforms in the fundamental

representation � of Gi, in the antifundamental representation � of Gj , and as a singlet under

all of the other factors. In the case i = j, we think of this field as transforming in the adjoint

representation of Gi. (Recall that the fundamental and antifundamental representations of

U(N) have dimension N ; the adjoint representation has dimension N2, equal to the dimension

of the group.) The k is a multiplicity index in case there is more than one superfield with these

charges.

The quiver — once upon a time, called a moose — provides a graphical language to express the

matter content of N = 1 quantum field theories with only bifundamental and adjoint matter.

The quiver consists of a collection of nodes and a set of arrows that connect pairs of nodes. There

is a node for each factor in (59) and an arrow for each chiral superfield. In our conventions, the

superfield transforms in the antifundamental representation of the group corresponding to the

node it departs and the fundamental representation of the group corresponding to the node it

enters. For anomaly cancellation, the number of arrows coming into a node equals the number

of arrows exiting the node. We draw the quiver for the suspended pinched point (SPP) in

Figure 5 and summarize the matter content.

We must supply both the quiver and the superpotential to describe the theory. The superpo-

tential is invariant under gauge transformations. We must therefore contract the gauge indices.
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Figure 5: The quiver for the suspended pinched point.

The terms in the superpotential are a subset of the closed loops in the quiver. For the SPP

theory, we have

W = tr
[
Φ3

3Φ1
3Φ3

1 − Φ3
3Φ2

3Φ3
2 + Φ2

3Φ1
2Φ2

1Φ3
2 − Φ1

2Φ3
1Φ1

3Φ2
1

]
. (60)

Notice that following the arrows, each term in the superpotential begins and ends at the same

node. Explicitly, the first term in the superpotential is

tr Φ3
3Φ1

3Φ3
1 = (Φ3

3)ba(Φ
1
3)cb(Φ

3
1)ac . (61)

Here, for Φ3
3, a is an antifundamental index of U(N)3 and b is a fundamental index of U(N)3;

for Φ1
3, b is an antifundamental index of U(N)3 and c is a fundamental index of U(N)1; for Φ3

1,

c is an antifundamental index of U(N)1 and a is a fundamental index of U(N)3. Fundamental

and antifundamental indices of the same gauge group contract to give a color singlet.

12. Another class of models arises from considering D-branes at asymptotically locally Euclidean

(ALE) singularities. In the simplest case, consider the quotient spaces C× C2/Γ, where Γ is a

discrete subgroup of SU(2). We have seen examples of these already in the Zn orbifolds. These

are N = 2 theories whose quivers correlate to the affine Dynkin diagrams associated to the

ADE groups. (This is the content of the McKay correspondence.) The field theories are dual to

string theory on AdS5×S5/Γ. Douglas and Moore showed that the resolution of the singularity

is identical to the equations describing the moduli space of vacua of the worldvolume theory on

the D-branes.
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Lecture 3

13. As a first example, let us consider N = 4 super-Yang–Mills theory with gauge group U(N).

In N = 1 language, the theory contains three chiral multiplets transforming in the adjoint

representation. The quiver is given in Figure 6.

Figure 6: The quiver for N = 4 super-Yang–Mills theory.

The superpotential for this theory is

W = trφ1[φ2, φ3] . (62)

As the φi transform in the adjoint representation, we can regarded them as complex valued

N ×N matrices. From differentiation of the superpotential, we obtain the F -term equations:

0 =
∂W

∂Φ1
= [φ2, φ3] , 0 =

∂W

∂Φ2
= [φ3, φ1] , 0 =

∂W

∂Φ3
= [φ1, φ2] . (63)

This means that the φi are matrices which are simultaneously diagonalizable. Each of the

matrices have N complex eigenvalues, so the moduli space of vacua is 6N real dimensional.

We can write the potential in terms of six real scalars:

V ∝ g2
YM tr

∑
i,j

[Xi, Xj ]
2 . (64)

At a generic point in moduli space, the eigenvalues of the matrices are unequal. The gauge

group is broken from U(N) to U(1)N . This is the Coulomb branch.

14. We want a systematic procedure for solving for the vacuum moduli space of N = 1 theories. In

this discussion, we follow Luty–Taylor, but antecedents for these results exist in the literature.

The action for the N = 1 theory

S =

∫
d4x

[∫
d4θ Φ†ie

V Φi +

(
1

4g2

∫
d2θ trWαWα +

∫
d2θ W (Φ) + h.c.

)]
(65)

enjoys an enormous gauge redundancy. It is invariant under

Φ 7→ gΦ , eV 7→ (g−1)†eV g−1 , (66)

where g = eiΛ and Λ is a chiral superfield. We work with Gc the complexification of the

gauge group. The complexification of a real Lie group G is a complex Lie group Gc containing

G as a real subgroup such that there is a Lie algebra isomorphism between the two. The

complexification of SU(N) is SL(N,C); the complexification of U(N) is GL(N,C).

Writing

VA = C − θσµθvµA + iθ2θλA − iθ
2
θλA +

1

2
θ2θ

2
DA , (67)

11
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where A is an adjoint index, the D-term equations can be written as

∂

∂CA
(φ†eCφ) = 0 , (68)

where φ is the scalar component of the chiral superfield Φ. One can then establish the following

properties:

• The F -flatness conditions are holomorphic and invariant under Gc.

• The D-flatness conditions fix the gauge.

• For every solution to the F -terms, there is a solution to the D-terms in the completion of

the orbit of the complexified gauge group.

• The set of gauge invariant operators (GIOs) provides a basis for the D-orbits.

• The vacuum moduli space is the symplectic quotient of the master space, which is the

manifold of scalar field vevs that satisfy the F -term equations:

M = F//G = F/Gc . (69)

15. Let’s recall a few facts from algebra. A ring is a set with two binary operations, + and × such

that it an Abelian group under addition and a monoid under multiplication, an operation which

distributes with respect to addition. We have:

a+ b = b+ a , (a+ b) + c = a+ (b+ c) ,

a+ 0 = a , a+ (−a) = 0 ,

(a× b)× c = a× (b× c) , a× 1 = 1× a = a , (70)

a× (b+ c) = (a× b) + (a× c) , (a+ b)× c = (a× c) + (b× c) .

The inverse under multiplication need not exist in the ring. We will often omit the ×.

A left ideal I is a non-empty subset of R such that for all x, y ∈ I, r ∈ R, the compositions

x+ y and rx are in I. That is to say,

r1x1 + . . . rnxn ∈ I , ∀ri ∈ R , ∀xi ∈ I . (71)

We say RI ⊆ I. Similarly, a right ideal I stems from the property that IR ⊆ I. An ideal is

both a left ideal and a right ideal.

A quotient ring R/I is the set of equivalent classes of elements in R modulo elements of an

ideal:

a ∼ b ⇐⇒ a− b ∈ I . (72)

Examples illustrate these definitions.

• Consider the ring of integers Z. There is an addition and a multiplication operation. Note

that n−1 /∈ Z for n 6= ±1. The integer multiples of k, where k is a positive integer, form

an ideal I = kZ. The quotient ring Zk = Z/kZ = {0, 1, . . . , k − 1}.

• Consider the ring of polynomials in the variable x with real valued coefficients: R = R[x].

Take the ideal I = (x2 + 1), consisting of all polynomials with a factor (x2 + 1). In the

quotient ring R/I, we have polynomials that look like a+ bx. This is isomorphic to C with

the rôle of i =
√
−1 played by the class [x].

12



N = 1 theories Vishnu Jejjala

• Consider the algebraic variety V = {(x, y)|xm = yn} ⊂ R2. The ring of real valued

polynomial functions on V is identified with the quotient ring R[x, y]/(xm − yn).

The last example provides a natural language for expressing the vacuum moduli space of a

quantum field theory. We first define the master space F as a quotient ring:

F = C[Φi]/{Fi} , (73)

where the ideal is defined for us by the F -terms.

16. To construct the vacuum moduli space we employ the following algorithm.

• We define the polynomial ring C[Φi, yj ]. The yj are new variables, one for each element of

the minimal basis of GIOs in the theory.

• We define the ideal I = {Fi(Φ), yj − rj(Φ)}. The rj are the GIOs in the minimal list.

• We eliminate the variables Φi from the ideal.

• This gives an ideal M⊂ C[yj ] in terms of the y variables.

17. This is a lot of formalism. Let’s do an example. Consider the conifold gauge theory. Its quiver

is shown in Figure 7.

Figure 7: The quiver for the conifold.

The superpotential for the theory is

W = tr [ϕ1χ1ϕ2χ2 − ϕ1χ2ϕ2χ1] . (74)

For simplicity, let us consider a U(1) × U(1) theory. The superpotential vanishes as the fields

commute. Thus, there are no F -terms to consider. From examination of the quiver, we see that

the minimal list of gauge invariant operators consists of the closed loops:

z1 = ϕ1χ1 , z2 = ϕ1χ2 , z3 = ϕ2χ1 , z4 = ϕ2χ2 . (75)

We see that there is a relation between the gauge invariant operators:

z1z4 = z2z3 . (76)

Taking the zi as coordinates in C4, the vacuum moduli space consists of the points that satisfy

this relation. In fact, Klebanov–Witten showed that if we place D3-branes at the singularity at

the origin, the worldvolume gauge theory is precisely the quiver model that we have considered.

The vacuum moduli space recapitulates the string realization of the field theory. This is the

lesson of Douglas–Moore.

13
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18. A class of examples of considerable interest to us is supersymmetric QCD (SQCD). We can have

two theories in the same universality class, meaning that while the field content and interactions

are different in the ultraviolet, they flow to the same infrared fixed point. This is Seiberg duality.

The duality occurs in a window where

3

2
Nc < Nf < 3Nc . (77)

The number of flavors of quarks is Nf and Nc sets the rank of the gauge group of the electric

theory. The matter content and interactions of the two theories is summarized in Table 1.

Figure 8: The electric and magnetic theories belong to the same universality class. The physics is

the same in the infrared.

electric magnetic

gauge group SU(Nc) SU(Nf −Nc)

global symmetries SU(Nf )L × SU(Nf )R × U(1)B × U(1)R SU(Nf )L × SU(Nf )R × U(1)B × U(1)R
q : (�, Nf , 1,

1
Nc
, 1− Nc

Nf
) Q : (�, 1, Nf ,− 1

Nf−Nc ,
Nc
Nf

)

chiral fields q : (�, 1, Nf ,− 1
Nc
, 1− Nc

Nf
) Q : (�, Nf , 1,

1
Nf−Nc ,

Nc
Nf

)

M : (1, Nf , Nf , 0, 2(1− Nc
Nf

))

superpotential W = 0 Wdual = λMQQ

Table 1: Seiberg dual theories.

The quarks and antiquarks in SQCD transform in defining representations of SU(Nc) whereas

the quarks and antiquarks in the dual transform in defining representations of SU(Nf−Nc). The

SQCD theory has superpotential W = 0. Its dual, however, has a nonvanishing superpotential:

Wdual = λMQQ . (78)

The mesons and baryons are gauge invariant operators. They are the same on both sides of the

duality, however in the magnetic theory, we regard the mesons as fundamental fields. Moreover,

the number of quarks in a baryon is fixed by the rank of the gauge group, which is different for

the electric and magnetic theories.

The duality exemplifies a strong coupling/weak coupling correspondence (an S-duality). One of

the checks of Seiberg duality is that the vacuum moduli space on the two sides is the same.

19. We are developing tools to compute the vacuum moduli spaces of semi-realistic quantum field

theories relevant to particle physics.

14
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Exercises

• Write the F -term equations for the SPP theory.

• Work out the GIOs of the electric and magnetic theories.

• Suppose Nf = Nc. How many GIOs are there in the electric theory? What is the dimension

of the vacuum moduli space?

• Consider the electroweak theory with gauge group SU(2)L×U(1)Y . We have Liα : (2,−1
2),

Hα : (2, 1
2), Hα : (2,−1

2), ei : (1, 1). What is a minimal list of GIOs?

• Take a quiver with n nodes arrayed on a circle with arrows in both directions between ad-

jacent nodes. Let the gauge group be U(1)n so that the superpotential vanishes. Compute

the vacuum moduli space.

References

[1] M. A. Luty and W. Taylor, “Varieties of vacua in classical supersymmetric gauge theories,” Phys. Rev. D

53, 3399 (1996) [hep-th/9506098].

This discusses the construction of the moduli space as a quotient.

[2] J. Gray, “A simple introduction to Grobner basis methods in string phenomenology,” Adv. High Energy

Phys. 2011, 217035 (2011) [arXiv:0901.1662 [hep-th]].

[3] J. Hauenstein, Y. H. He and D. Mehta, “Numerical elimination and moduli space of vacua,” JHEP 1309,

083 (2013) [arXiv:1210.6038 [hep-th]].

The previous works describe the elimination algorithm for computing the vacuum moduli space.

[4] I. R. Klebanov and E. Witten, “Superconformal field theory on three-branes at a Calabi-Yau singularity,”

Nucl. Phys. B 536, 199 (1998) [hep-th/9807080].

The conifold theory.

[5] N. Seiberg, “Electric - magnetic duality in supersymmetric non-Abelian gauge theories,” Nucl. Phys. B 435,

129 (1995) [hep-th/9411149].

A classic in quantum field theory.

15


