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Abstract

I will review recent progress including properties of norms and entropy
functionals and discuss construction and study of dyssipative dynamics
in noncommutative spaces.



Non Commutative Banach Spaces
C*-algebra : A.

Positive Elements : AT = {a*a: ac A}.

A state

w(f) =Tr(pf), with  p >0, Trp=1

Hamiltonian Dynamics
ar(f) = D) = pt o7
Modular Operator?
A° = AZ =p°fp °

Scalar Products: For s € [0, 1]

1

(f,Pw,s =TT ((p%fp%s)* (p%gpis)) = w ((A%(F))* A%(9))




Interpolating Family of Non Commutative L,(w, s) -spaces :

For p € [1,00], s € [0,1]

s 1l=s|P
||f||p,w,s =Tr|pPfp P

For n € N, s € [0, 1]

1Al s = w (A%<f)AS+Tl<f>...AS+T”<f>)

Positive elements : Ly(w,s)™

Nice fitting together of At and L3 (v, ).



Completely Positive Maps = CPMs
Monotonicity of L, norms (associated to weights)

Theorem VB3 € [0,1] Vr = 2", n €N

(1-58) B (1-5) B
P d(X)P(P) R < Tr P XP T,

Tr|®(P)~
where & is a CPM.

Theorem For every r € [2,00) and 3 € [0, 1], all the functionals

_(1-8) B|"

A(X) =Tr|P XPr

are (jointly) CPM-monotone.



e For a convex function W which is monotone increasing on (0, oc0) with
W(0) =0 and W(z) — oo as x — oo, define

No(X) = Trv(X*(n(Q)) 1X)

with a positive operator concave function n and @ a positive operator.

Theorem The Orlicz functional
No(X) = Trw(X*(n(Q))1X)
is (Jointly) CPM-monotone.



e With W(t) = t9(log(1 + t9))%, with g € [1,00) and «a € (0,00), we have
the following (jointly) CPM-monotone functional

Tr (X*(Q_l/q)X>q (log (14 (X*(Q—l/Q)X)q))O‘



Monotone Scalar Products and Duality

A scalar product (-,-)p associated to a density matrix P is called CPM-
monotone, iff

((X), P(X))g(py < (X, X)p.

Given a scalar (-,-) p product and an Orlicz functional Ap(), we define a
dual functional

=p(X) =sup (R(X,Y)p — Ap(Y))).

Consider complementary Young functions ® and W (continuous, strictly
increasing on [0, co, going to zero at the origin and at infinity faster than
linearly).



Fact : The inverse functions satisfy

a< ® Ya)W1(a) < 2a, fora> 0.

A scalar product associated to a density matrix p as follows:
(X, Y)pa = Tr((@~Hp)W ()" X (@™ Hp)W ™ H(p)' °Y)

=Tr (((@7 (N X (@71 (o)) (W N Y (w1 (p))?)),
Young Inequality

(X,Y)pa < Ppal(X)+ WVpalY)
where

Dp0(X) = Tr(S((P~ 1) X (P~ H(p))),
Upa(Y) = Tr(W((W ) Y (W H(p))),



[

We remark that for Orlicz functions ® and W the function

[0,00) D2 — O(z) = d 1 (x)W—1(2) is log-concave.

If it is also operator log-concave in the sense, that for any positive
operators A and B

A+ B

O( ) > ©(A)1e(B),

where
1 1 1 % 1
AfB = A2 - (A_iBA_ﬁ) - A2
denotes operator geometric mean, then by Theorem 2.3 of
Ref.[T.AndoF.Hiai2011], the function © is operator monotone. Hence
by a well-known result, the function © is operator concave (see e.g.,

Theorem V.2.5 of Ref.[R. Bhatial997]). Thus we conclude with the
following property.



Proposition For ®—1.w—1 operator concave, the following scalar prod-
uct is CPM-monotone

<X,Y>p,aET7“< — 1 —X _1 >*< — 1 —Y _1 )
(@ TN (@107 \(WI)ia (w-I(p)e

Conjecture Suppose an Orlicz functional Ap(-) and a scalar product
(-,-)p are CPM-monotone. Then the dual functional =p(-) is also CPM-
monotone.



Logarithmic Sobolev Inequality: Perturbation Theory

e [ he Classical Case
Entu(f?) < [ 1V Pdp (LS2)

where

Ent (f2)=u<f2log f° )
: B n(f2)

and a constant ¢ € (0, ) independent of f.



Linearisation Formula with respect to the measure:

2 2 > f? 2
(7100 i) = (7100 5 - 1)

It was shown in Ref.[S.G.BobkovF.G0tze1999] that such inequality is
equivalent to the following bound

I(F = w3y < C / IV £ |2dy

with ||-|| y denoting the Luxemburg norm corresponding to a Young func-
tion N(x) = |x|log(1l + |z|) and some constant C € (0,c) independent
of f .



e Non Commutative Case
Let w(f) =Tr(pf)

with a density matrix p > 0, Trp=1. Let

Ifllp = Tr|FpplP

with
1 1
Fop = p fp=P.
Fact:
d
_ p —
75 UF1E) —y = Emt2,,(£)
where

Enty ,(f) = Tr|F,2|? (Iog P2l —Iogp>
P P T?“|Fp,2|2



Some properties of norms and Relative Entropy

Concavity properties of the L,(w), for p € (1,2], norms:

I£llp = lw(DIZ + (e — DI,

with = f —w(f).
Rothaus Inequality:

Ento, () < Entz ,(F) + 2||fII3.

Let

Lp(f) = sup Enty ,(f + a).
aclR



Properties:
— For any ¢ € (0, c0)

Lo(CF) = C2Lo(f).

Ep(f) — Lp(f)



Given a constant v > 1, we introduce the following functional

Nop(f) = Tr(|F,2%(log(vp + |F,2]%) — 10g p)).

N,(f) is an Orlicz functional. Let

[fllnv =inf{¢>0: N (g) <1}

be the corresponding Luxemburg norm ( corresponding formally to the

Young function N(z2) = z2log(y + z2) ).

Theorem [AZ2014]
There exist constants cg, ¢ € (0,00) such that

coll Fllv < Lo(f) < c1llflin-



Markov Semigroups
Semigroup of operators (F;);>¢ (linear or nonlinear)

P;:B— B, where (B,|-||) a Banach space
(CA - 1Dy (Lp(w, 8), I - [Ip,s), Orliczspace, .....);

° PtPS = Pt-l—s , t, S > 0;
° PtZO = id;

e t+— P.f continuous for any f € B,
(strongly, (in op norm, weakly,..., inyNnnalgebras) )-



Positive : For a proper convex cone B+
P :BT 5Bt (

2-Positive

Schwartz Inequailtycp,ir go)

P(f*f) > P(f*)P(f)

n-Positive

Pt(") : Mn(A) = Mny(A)

Pt(n)(f ® Ejj) = P(f) ® Ejj



(where Ejj,i,j = 1,..,n are matrix units spanning My,(C)), is
positive.

Completely Positive
Vn € N Pt(”) . Mn(A) — Mp(A) is positive
Unit Preserving

o Pl=1,Vt>O0;

Symmetric in Ly (w,s)
([SQV’ 84]+via Dirichlet Forms[AH -K'77],[Ci’]4+Korean Grp[Pa])



E.g.’s

a) Linear o erismaes’ 91], [Matsuil groundstaterepresentation-[BaKoPa’ 03lext, .

b) Gaussian type semigroups ((ciraLi].[0za].[Pa..])

c) On oco-dim algebras;;z] (moz]....

d) Diffusion Type (Ho"rmander type Generators) ; oz/10)



e) via Drichlet |:Orms’([Pa’OS] avoiding Liasymptotic abelianess,...)

f) No E.g.s of symmetric jump type @ co-dim spaces with non-
classical interaction

g) Nonlinear | 5713

Se(f) = e tf + [{dslogw(exp(e™*f))



Markov Semigroups on infinite dimensional algebras
Construction and Ergodicity

[MOZ] [MZ]SpinSystemS> [LOZ] HoermanderType> [MaesG],[Matsui] groundstate

Markovian Quadratic Form for a Markov Generator L

Ce(f) = 5L ) — LUDf = L))



Hypercontractivity in Noncommutative Spaces.

Definition of Hypercontractivity:

A Markov semigroup P; = et£ is hypercontractive in Lg(w),
1 < g < oo spaces iff



For any 1 <pg <p < o0

T € (0,00)Vt >T  ||P:fllp < || fllpo



Spectral Theory + Gaussian Bounds.

Hypercontractivity <= 7 ParticleStructure?

- Invariant Subspaces Ly(p) = Ho Gpen Hn

- Spectrum

de>0 VneN o(L | Hn) C (—o0,—en),

- Gaussian Bounds: Vne N Vf € Hp
3C >0 [ flla < C™[|f]l2;



E.g.s
e Free Quantum Field;\e/ g6) [si)

e For Fermions[Gr/66],[cL’92]

o 1-D Ising(pg 7/00]

Product States on NC A & Weak Product Property (o ¢, z/01],[B& 20

o Quantum O-U ;547 0g



o EXOtICCCR (, ou(Biane’ 97],[Bozejko’ 99],[BozKuSp’ 97];t- OU[Krolak’ 05].)

e Quasi-Free & Fermionic r.paka’14)

[OH &2'01]

copt(k) = (k/(k2))log(k1)



Hypercontractivity for product states I.
e Product state w = ®; wp,, where wp, = Trp,(pp, - )

0 < pp; = lloall < ooy Ay A, =0 for
k1.

o Ly(w,s) norms

p
IR o)



for f € A with pp = H/\zﬂ/\#@ PA,-

e L>(w,s) scalar product

1—s s
<[, 9> (ws=Tr (p/\Q f*p?\g>



e Markov generator symmetric in Lo(w, s), Vs € [0, 1],
Lf=) (En(H)-1)
leR
defined with

e Generalized Conditional Expectation

Ex(f) =Trx (€, fén)

where for a bdd set X C 'R,

Ex = p/%\l (TI‘XpAl)

1
2




T heorem :

e Hypercontractivity : The Markov semigroup P; = etL satis-
fies
HPtfH]Lp(t)(w,s) < ||f||L2(w,s)
for any s € [0, 1] with p(t) = 1 4+ e*, with some a > 0.

e Weak product property: |gqqinecau & 2/00], [Hebisz, Olkiewicz & 2'01]

Therefore (for s = %)

32, € (0,00)
QE’I’LtQ(f) < E/\O <f’ o Z (EZ(f) - f)>L2(w,%)

i€zd



where

QEnty(f) = lim Tr oy %" fon P (1og oy *" fpp *|=1/2p 10 pp)

Hypercontractivity and Spectral Gap

(H) = |Pf —w(F)I3 < e ™| f —w(H)]3



Equivalence Theorem
Suppose P is a Lo-symmetric Feller semigroup which is hyper-
contractive, that is we have

IPefllgqey < exp{2d (5 — ) I 12 (*)

with d € [0,00) and ¢(t) = 1 + e2t/¢ defined with some constant
c € (0,00).

Then the following Logarithmic Sobolev inequality is true.

(F, Ta(N—=NflI310g ] flla < c€a(f, £)+d| 13 (LS(c,d))



Optimal Product Property 77

Bounded Perturbation Lemma 77

LS(c) for infinite dimensional models 777

At least for classical interaction 7

1-D models 7



Strong Ergodicity via Hypercontractivity 777

Equivalence of Complete Analyticity and Log-Sobolev Ineq 777

[SZ' 92]

Slower tails weaker functional inequallities 777

Chellanging Computational Problems



@ Large Interacting Systems & Slow
Decay to Equilibrium

(Phase transitions, Disordered
systems, Ground States,...... )



Logarithmic Sobolev Inequality: Perturbation Theory

e [ he Classical Case Bounded Perturbation of the Relative Entropy:

Entu(f2) < [ 1VfPdp (LS5)

where

Ent (f2)=u<f2|09 f° )
g B n(f?)

and a constant ¢ € (0,00) independent of f.



Linearisation Formula (with respect to the measure):

> 2\ 2.2 f
(o) =tslen (o)

o(z) =zlogz—2+4+1

with

Proposition:
If dv = e Vdpu, then

Ent,(£2) < e ™) Ent,, (2)

Bounded Perturbation of the classical Dirichlet form:
Let

Eu(f) = u| V2
Proposition:
If dv = e Ydyu, then

En(f) < e*PYEL(f)



Bounded Perturbation of Log-Sobolev Inequality:
Theorem:
If dv = e Ydu and

Entu(S2) < cu [ 1V11Pdp,

then
Enty(fQ) S GOSC(U)C,LL(‘:V(]C)



Bounded Perturbation of Poincare Inequality: Classical Case
mp (f — pf)* < Eu(f)
Note that
2 __ . 2 2
v(f—vf)*=infv(f—a) <v(f—uf)
acR

< e—infUlu (f—,LLf)Q < e—infUm—lg,u(f) < eOSC(U)m_lgy(f)



e Non Commutative Case



Dirichlet Forms in Non Commutative Setup
C*-algebra : A.

Positive Elements : AT = {a*a: ac A}.

A state

w(f) =Tr(pf), with  p >0,

Hamiltonian Dynamics

a(f)= A" =p"fp"
Modular Operator?
A° = N5 =p°fp°
Relative Modular Operator?®

AL =0fp"

Trp=1



Scalar Products: For s € [0, 1]

1—s

(f,9)w,s =Tr ((p%fp%)* (p%gp%» = w ((AS(M))* 2%(9))

Interpolating Family of Non Commutative L,(w,s) -spaces :

For p € [1, o0], s € [0, 1]

1—s

s p
pPfp P

[fllpws =TT

For n € N, s € [0, 1]

s 1—s S n
1£13E s = T (pzn Pt fp2n>

Positive elements : Ly(w,s)™

Nice fitting together of At and L3 (v, ).



Dirichlet Forms
Suppose for some a € R

AP(X) = et X.

Then the following is a Dirichlet form in L(w,3).

Ex(f) = Ex () = 0x (1), 0x (), 1 + (Ox(f), 0x+(f)), 1
where

6z(f) =1lZ, f]



Perturbation of Dirichlet Forms.

Theorem : Suppose the following Poincarée Inequality holds
If = ws(DIZ 1 < €5 ()

Suppose X =X + B.

If
1 2
Z 2
and
. R ENE <1 a?
4z- (1| B5B)[ Moo + 1| B3 B M5 ) < 1.
then

30 € (0,00)  Ex(f) <C- Ex(f)



Perturbation of Poincaré Inequality.

Theorem: Suppose 3¢ € (0,00)
2 ~
17 = wp(DIZ; < 2Eg 50
Suppose X =X — B with
2
||[5,oo> <1

_ 1
A%(BY)

- <1 2
a2 (183 +

Assume that
2 2
125D 13 00 + 11 25,,(D] 117,00 < o0
Then 3c € (0,00)
1f = wp(DIP 1 < e Ex p();



Example: Perturbation of Gaussian State on CCR Algebra
CCR on Infinite Dimensional Hilbert space

[A,A]=1 and N=A*A
With a density matrix p = ze~#V define
w(f) =Tr(pf)

For V < CN—1 define

1
A4



Thank you for your attention !






THE END



