A W^* -correspondence approach to multivariable Schur classes

Sanne ter Horst ¹ North-West University

OAQD 2016 University of Pretoria

Joint work with J.A. Ball, A. Biswas and Q. Fang

Discrete Lax-Phillips scattering

Discrete-time Lax-Phillips scattering system

U on K unitary, $\mathcal{G}, \mathcal{G}_* \subset K$, $\mathcal{G} \perp \mathcal{G}_*$, such that

- $U\mathcal{G} \subset \mathcal{G}$, $\bigcap_{n=0}^{\infty} U^n \mathcal{G} = \{0\}$;
- $U^*\mathcal{G}_* \subset \mathcal{G}_*$, $\cap_{n=0}^{\infty} U^{*n}\mathcal{G}_* = \{0\}$;

Then $\mathcal{E} := \mathcal{G} \ominus U\mathcal{G}$ and $\mathcal{E}_* := U\mathcal{G}_* \ominus \mathcal{G}_*$ are wandering for U:

$$\mathcal{K} = \mathcal{G}_* \oplus \mathcal{H} \oplus \mathcal{G} = \bigoplus_{n=-\infty}^{-1} U^n \mathcal{E}_* \oplus \mathcal{H} \oplus \bigoplus_{n=0}^{\infty} U^n \mathcal{E}$$

The scattering operator $S\in \mathcal{B}(\ell^2(\mathcal{E}),\ell^2(\mathcal{E}_*))$ given by $S=\Phi_*\Phi^*$, with

$$\Phi: k \in \mathcal{K} \mapsto (P_{\mathcal{E}}U^{*n}k)_{n=-\infty}^{\infty} \in \ell^2(\mathcal{E}), \quad \Phi_*: k \in \mathcal{K} \mapsto (P_{\mathcal{E}_*}U^{*n}k)_{n=-\infty}^{\infty} \in \ell^2(\mathcal{E}_*),$$

is a contractive analytic Laurent operator, with symbol $F \in \mathcal{S}(\mathcal{E}, \mathcal{E}_*)$ given by

$$F(z) = D + zC(I_{\mathcal{H}} - zA)^{-1}B, \quad \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} P_{\mathcal{H}}U \\ P_{\mathcal{E}} \end{bmatrix} \begin{bmatrix} P_{\mathcal{H}} & P_{\mathcal{E}_*} \end{bmatrix}$$

The classical Schur class

Schur class

Let $\mathcal U$ and $\mathcal Y$ be Hilbert spaces. The operator-valued Schur class $\mathcal S(\mathcal U,\mathcal Y)$ can be defined as the closed unit ball of $H^\infty(\mathcal U,\mathcal Y)$ over the open unit disk $\mathbb D$: functions $F:\mathbb D\to\mathcal B(\mathcal U,\mathcal Y)$ analytic on $\mathbb D$ with $\|F\|_\infty=\sup_{z\in\mathbb D}\|F(z)\|\leq 1$.

Transfer function realization

Schur class functions appear as transfer functions of dissipative systems:

$$\Sigma: \left\{ \begin{array}{ll} x(n+1) &= Ax(n) + Bu(n) \\ y(n) &= Cx(n) + Du(n) \end{array} \right. \quad (n \in \mathbb{N})$$

with contractive system matrix

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] : \left[\begin{array}{c} \mathcal{X} \\ \mathcal{U} \end{array}\right] \to \left[\begin{array}{c} \mathcal{X} \\ \mathcal{Y} \end{array}\right]$$

and transfer function $F_{\Sigma} \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$:

$$F_{\Sigma}(z) = D + zC(I - zA)^{-1}B \quad (z \in \mathbb{D}).$$

Characterizations of $\mathcal{S}(\mathcal{U},\mathcal{Y})$

- (1) Unit ball of $H^{\infty}(\mathcal{U}, \mathcal{Y})$: F analytic on \mathbb{F} and $||F||_{\infty} \leq 1$;
- (2) Contractive multiplier: The multiplication operator

$$(M_F g)(\lambda) = F(\lambda)g(\lambda)$$

defines an operator $M_F \in \mathcal{B}(H_{\mathcal{U}}^2, H_{\mathcal{Y}}^2)$ with $\|M_F\| \leq 1$.

(3) von Neumann inequality for \mathbb{D} : F analytic and

$$||F(T)|| \le 1 \quad (T \in \mathcal{B}(\mathcal{H}), ||T|| < 1)$$

(4) Positive kernel characterization: The de Branges-Rovnyak kernel

$$\mathcal{K}_F: \mathbb{D} imes \mathbb{D} o \mathcal{B}(\mathcal{Y}), \quad \mathcal{K}_F(z,w) = rac{I_{\mathcal{Y}} - F(z)F(w)^*}{1 - z\overline{w}}$$

is a positive kernel: $[F(z_i, z_j)]_{i,j=0}^N \ge 0$ for any z_0, \ldots, z_N .

(5) Transfer function realization: There exists a unitary colligation

$$U = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] : \left[\begin{array}{c} \mathcal{X} \\ \mathcal{U} \end{array} \right] \to \left[\begin{array}{c} \mathcal{X} \\ \mathcal{Y} \end{array} \right]$$

such that
$$F(z) = D + zC(I - zA)^{-1}B$$
.

¹This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 93039, 90670, and 93406).

(5) Transfer function \Rightarrow (4) positive kernel

Since F(z) = D + zC(I - zA)B with $U = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ unitary we can compute:

$$I - F(z)F(w)^* = (1 - z\overline{w})C(I - zA)^{-1}(I - wA)^{-*}C^*$$

Hence K_F factors as $K_F(z, w) = H(z)H(w)^*$ with $H(z) = C(I - zA)^{-1}$, making it a positive kernel.

(4) positive kernel \Rightarrow (3) operator points

Via a factorization $K_F(z, w) = H(z)H(w)^*$ we find

$$I - F(z)F(w)^* = H(z)(1 - z\overline{w})H(w)^*,$$

which yields for any strict contraction T:

$$I - F(T)F(T)^* = H(T)(1 - TT^*)H(T)^* \ge 0.$$

Hence $||F(T)|| \leq 1$.

Sketch of proof II: Harder direction (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)

View $H^2 \subset L^2$ and $H^\infty \subset L^\infty$. Then $F \in H^\infty \subset L^\infty$ gives

$$L_F: L^2_{\mathcal{U}} \rightarrow L^2_{\mathcal{Y}}, \quad (L_F g)(e^{it}) = F(e^{it})g(e^{it})$$

has $\|L_F\| = \|F\|_{\infty} \le 1$.

F analytic:
$$L_F: H^2_{\mathcal{U}} \to H^2_{\mathcal{Y}}$$
 and $M_F = L_F|_{H^2_{\mathcal{U}}}$.

So $||M_F|| \le ||L_F|| \le 1$.

(2) multiplication operator \Rightarrow (4) positive kernel

Again use $M_F^*(k_w \otimes y) = k_w \otimes (F(w)^*y)$ and $\langle k_w \otimes y, k_{w'} \otimes y' \rangle = \frac{1}{1-w'\overline{w}}$:

$$\langle (I - M_F M_F^*)(k_w \otimes y), (k_z \otimes y') \rangle$$

$$= \langle k_w \otimes y, k_z \otimes y' \rangle - \langle k_w \otimes (F(w)^* y), k_z \otimes (F(z)^* y') \rangle$$

$$= \langle K_F(z, w)y, y' \rangle.$$

 $\|M_F\| \leq 0$ gives $I - M_F M_F^* \geq 0$ and, by linearity, K_F factors as

$$K_F(z, w) = H(z)H(w)^* \text{ with } H(z) = (k_z \otimes l_y)^*(I - M_F M_F^*)^{\frac{1}{2}}.$$

 $(2) \Rightarrow (3) \Rightarrow (4)$ via SzNF dilation, GNS construction and HB separation.

(3) operator points \Rightarrow (2) multiplication operator on H^2

Let $S = M_z : H^2 \to H^2$ be the forward shift operator. Then for $r \in (0,1)$:

$$\|rS\| = r < 1$$
 and $F(rS) \to M_F$ strongly as $r \to 1$.

Thus

$$1 > ||F(rS)|| \to ||M_F||$$
 as $r \to 1$.

(2) multiplication operator on $H^2 \Rightarrow$ (1) unit ball H^{∞}

Let k_w be de reproducing kernel elements of H^2 : $k_w(z) = \frac{1}{1-z\overline{w}}$. Then

$$M_F^*(k_w \otimes y) = k_w \otimes (F(w)^*y) \quad (w \in \mathbb{D}, y \in \mathcal{Y}).$$

Since $||M_F|| \leq 1$, we have

$$||k_w \otimes (F(w)^*y)|| \le ||k_w \otimes y||$$
, hence $||F(w)^*y|| \le ||y||$ $(y \in \mathcal{Y})$.

Sketch of proof II: Harder direction $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$

(4) positive kernel \Rightarrow (5) Transfer function

Option (1): Construct the unitary canonical model colligation via the de Branges-Rovnyak reproducing kernel Hilbert space associated with K_F .

Option (2): Lurking isometry argument. Via factorization $K_F(z,w) = H(z)H(w)^*$ we find

$$I - F(z)F(w)^* = (1 - z\overline{w})H(z)H(w)^*.$$

Reorder: $I + H(z)H(w)^* = F(z)F(w)^* + z\overline{w}H(z)H(w)^*$ and define a partial isometry

$$V\left[\begin{array}{c}H(w)^*y\\y\end{array}\right]=\left[\begin{array}{c}\overline{w}H(w)^*y\\F(w)^*y\end{array}\right]\qquad(w\in\mathbb{D},\,y\in\mathcal{Y}).$$

Extend V^* to a unitary colligation $U = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ s.t. U^* satisfies the same identity. Solve for H and F:

$$H(z) = C(I - zA)^{-1}, \quad F(z) = D + zC(I - zA)^{-1}B.$$

O

Drury-Arveson space (Drury, Arveson, ...)

Variation on H^2 given by the RKHS $\mathcal{H}(K_d)$ of the Szegö kernel

$$\mathcal{K}_d(z,w) = rac{1}{1-\langle z,w
angle} \quad (z,w\in\mathbb{B}_d = \{z\in\mathbb{C}^d\colon \|z\|<1\})$$

Schur class functions: $F: \mathbb{B}_d \to \mathcal{B}(\mathcal{U}, \mathcal{Y})$ analytic such that

$$M_F: \mathcal{H}(K_d) \otimes \mathcal{U} \to \mathcal{H}(K_d) \otimes \mathcal{Y}$$
 contractively.

What remains (for d > 2):

$$(1) \iff (2) \iff (3) \iff (4) \iff (5)$$

Comments

- (1) \Rightarrow (2): $||F(z)|| \le 1$, $z \in \mathbb{B}_d$ not enough; d = 2 Ando's dilation theorem
- (3) evaluation in commutative row contractions
- (4) \Rightarrow (5): Canonical model not unique; via solutions of Gleason problem.
- (5) Transfer function form

$$F(z) = D + C(I - Z(z)A)Z(z)B$$

with
$$Z(z) = \begin{bmatrix} z_1 I_{\mathcal{X}} & \cdots & z_d I_{\mathcal{X}} \end{bmatrix}$$
, $A: \mathcal{X} \to \mathcal{X}^d$, $B: \mathcal{U}_{\mathbb{P}} \to \mathcal{X}^d$.

W^* -correspondence approach to H^{∞} (Muhly-Solel)

W* correspondence

A W^* -correspondence w.r.t. a pair $(\mathfrak{A},\mathfrak{B})$ of von Neumann algebras is a bimodule E with left \mathfrak{A} -action and right \mathfrak{B} -action with \mathfrak{B} -valued inner product $\langle \; , \; \rangle : E \times E \to \mathfrak{B}$ satisfying for $\lambda \in \mathbb{C}$, $a \in \mathfrak{A}$, $b \in \mathfrak{B}$, $\eta, \eta', \eta'' \in E$:

- $\langle \lambda \eta + \eta', \eta'' \rangle = \lambda \langle \eta, \eta'' \rangle + \mu \langle \eta', \eta'' \rangle$;
- $\bullet \ \, \langle \eta \cdot b, \eta' \rangle = \langle \eta, \eta' \rangle b, \qquad \langle \mathbf{a} \cdot \eta, \eta' \rangle = \langle \eta, \mathbf{a}^* \cdot \eta' \rangle;$
- $\langle \eta', \eta \rangle^* = \langle \eta, \eta' \rangle$;
- $\langle \eta, \eta \rangle_E \ge 0$; (with equality iff $\eta = 0$)

such that E is a Banach space with respect to the norm $\|\eta\|_E := \|\langle \eta, \eta \rangle_E\|_{\mathfrak{A}}^{\frac{1}{2}}$, and E self-dual:

$$T \in \mathcal{B}^{a}(E, \mathfrak{B}) \iff T\eta = \langle \eta, \eta_{T} \rangle \text{ for some } \eta_{T} \in E.$$

Correspondence-representation pair and the Fock space

A correspondence-representation pair (E, σ) consists of a W^* -correspondence E w.r.t. $(\mathfrak{A}, \mathfrak{A})$ and an faithful *-representation $\sigma : \mathfrak{A} \to \mathcal{B}(\mathcal{V})$.

$$\mathcal{F}^2(E) = igoplus_{n=0}^\infty E^{\otimes n} \quad ext{and} \quad \mathcal{F}^2(E,\sigma) = \mathcal{F}^2(E) \otimes_\sigma \mathcal{V}.$$

N.B. $\mathcal{F}^2(E)$ and $\mathcal{F}^2(E,\sigma)$ are W^* -corresp. w.r.t. $(\mathfrak{A},\mathfrak{A})$, resp. $(\mathfrak{A},\mathbb{C})$.

Free semigroup algebras (Popescu, Davidson, Kribs, Pitts, ...)

Functions: formal power series in d noncommutative indeterminates; powers indexed by the free semigroup \mathcal{F}_d in d letters $\{1, \ldots, d\}$. The Hardy space

$$H^2(\mathcal{F}_d) = \{f(z) = \sum_{\alpha \in \mathcal{F}_d} f_{\alpha} z^{\alpha} \colon \sum_{\alpha \in \mathcal{F}_d} |f_{\alpha}|^2 < \infty\},$$

is a NCFRKHS (noncommutative formal RKHS) with Szegö kernel

$$K_{d,nc}(z,w) = \sum_{\alpha \in \mathcal{F}_d} z^{\alpha} w^{\alpha^T}.$$

Schur class: Formal powers series F with $\mathcal{B}(\mathcal{U},\mathcal{Y})$ coefficients that define contractive multipliers $M_F: H^2(\mathcal{F}_d) \otimes \mathcal{U} \to H^2(\mathcal{F}_d) \otimes \mathcal{Y}$. Then (d > 2):

$$(2) \iff (3) \iff (4) \iff (5)$$

Comments

- (3) evaluation in noncommutative row contractions.
- (5) Transfer function same form but with NC indeterminates.
- Drury-Arveson setting reappears when restricting to commutative row-contractions (abelianization).

W^* -correspondence approach to H^{∞} (Muhly-Solel)

Definition of $\mathcal{F}^{\infty}(E)$

Let the left \mathfrak{A} -action on $\mathcal{F}^2(E)$ be given by a normal *-rep. $\varphi:\mathfrak{A}\to\mathcal{B}(\mathcal{F}^2(E))$ and for $\eta\in E$ define the creation operator

$$C_\eta \in \mathcal{B}(\mathcal{F}^2(E)), \quad C_\eta \left(igoplus_{n=0}^\infty \xi^{(n)}
ight) = 0 \oplus igoplus_{n=0}^\infty (\eta \otimes \xi^{(n)}) \quad (\xi^{(n)} \in E^{\otimes n}).$$

Then $\mathcal{F}^{\infty}(E)$ is the ultra-weak closure of the algebra generated by $\varphi(a)$, $a \in \mathfrak{A}$, and C_{η} , $\eta \in E$. Also $\mathcal{T}_{+}(E)$ is the norm closure (NC disc algebra).

Point-evaluation maps

A linear, completely contractive bimodule map $T: E \to \mathcal{B}(\mathcal{V})$ generates a completely contractive representation $\rho = \rho_T$ of $\mathcal{T}_+(E)$ on $\mathcal{B}(\mathcal{V})$ via

$$\rho(\varphi(a)) = \sigma(a), \quad \rho(C_{\eta}) = T(\eta)$$
 (and all are obtained in this way)

which may or may not extend to $\mathcal{F}^{\infty}(E)$.

Also, T induces a contractive bi-module maps from $\zeta_T : E \otimes \mathcal{V} \to \mathcal{V}$ via

$$\zeta_T(\eta \otimes v) = T(\eta)v$$
 (and all are obtained in this way),

and $ho=
ho_{\mathcal{T}}$ extends to $\mathcal{F}^{\infty}(E)$ at least whenever $\|\zeta_{\mathcal{T}}\|<1$.

Intertwining characterization

Dual correspondence-representation pair

Let $\iota: \sigma(\mathfrak{A})' \to \mathcal{B}(\mathcal{V})$ the embedding *-representation and

$$E^{\sigma} = \{ \mu : \mathcal{V} \to E \otimes \mathcal{V} : \mu \text{ a bi-module map w.r.t. } \mathfrak{A} \}.$$

Then E^{σ} is a W^* -correspondence w.r.t. $(\sigma(\mathfrak{A})', \sigma(\mathfrak{A})')$:

$$\langle \mu, \mu' \rangle = \mu'^* \mu, \quad b \cdot \mu \cdot b' = (I_E \otimes b) \mu b'$$

and (E^{σ}, ι) is a CR pair which is dual to the CR pair (E, σ) .

Intertwining characterization

For $\mu \in E^{\sigma}$, define a dual creation operator \widehat{C}_{μ} on $\mathcal{F}^{2}(E,\sigma)$ by

$$\widehat{C}_{\mu}(\oplus_{n=0}^{\infty}\xi^{(n)})=0\oplus\bigoplus_{n=0}^{\infty}(\widehat{C}_{\mu}^{(n)}\xi^{(n)}),\quad \widehat{C}_{\mu}^{(n)}(\eta_{n}\otimes\cdots\otimes\eta_{1}\otimes\nu)=\eta_{n}\otimes\cdots\otimes\eta_{1}\otimes\mu\nu.$$

Then $R \in \mathcal{B}(\mathcal{F}^2(E, \sigma))$ is in $\mathcal{F}^{\infty}(E) \otimes I_{\mathcal{V}}$ if and only if it commutes with

$$I_{\mathcal{F}^2(E)} \otimes b, \ b \in \sigma(\mathfrak{A})', \quad \widehat{C}_{\mu}, \ \mu \in E^{\sigma}.$$

Reproducing kernel correspondences I

Reproducing kernel correspondences

A reproducing kernel W^* -correspondences (RKW*C) on a set Ω w.r.t. $(\mathfrak{A}, \mathfrak{B})$ is a W^* -correspondence G w.r.t. $(\mathfrak{A}, \mathfrak{B})$ s.t. $f \in G$ is a functions $f : \Omega \times \mathfrak{A} \to \mathfrak{B}$ and there exist $k_w \in G$, $w \in \Omega$ s.t.

$$\langle a \cdot f, k_w \rangle_E = f(w, a).$$

The reproducing kernel is the map $K: \Omega \times \Omega \to \mathcal{B}(\mathfrak{A},\mathfrak{B})$ given by

$$K(w,w')[a]=k_{w'}(w,a).$$

For $K : \Omega \times \Omega \to \mathcal{B}(\mathfrak{A}, \mathfrak{B})$ TFAE ([BBLS04] (2) \Leftrightarrow (3); [BBFtH09]; [Marx17]):

- (1) K is the reproducing kernel for a RKW*C on Ω w.r.t. $(\mathfrak{A}, \mathfrak{B})$.
- (2) K is a completely positive kernel: For all $w_i \in \Omega$, $a_i \in \mathfrak{A}$, $b_i \in \mathfrak{B}$:

$$\sum_{i,j=0}^{n} b_{i}^{*} K(w_{i}, w_{j}) [a_{i}^{*} a_{j}] b_{j} \geq 0$$

and $K(w, w') \in \mathcal{B}(\mathfrak{A}, \mathfrak{B})$ is weak-* continuous for all $w, w' \in \Omega$.

(3) K has a Kolmogorov decomposition: $\exists W^*$ -corresp. G w.r.t. $(\mathfrak{A},\mathfrak{B})$ and $k_w \in G$, $w \in \Omega$, s.t. $K(w',w)[a] = \langle ak_w, k_{w'} \rangle$.

Toeplitz structure

Toeplitz structure characterization

Let $R = [R_{i,j}]_{i,j=0}^{\infty} \in \mathcal{B}(\mathcal{F}^2(E,\sigma))$. Then $R \in \mathcal{F}^{\infty}(E) \otimes I_{\mathcal{V}}$ iff

- R lower triangular: $R_{i,j} = 0$ if i < j;
- Local intertwining structure: For all $b \in \sigma(\mathfrak{A})'$, $\mu \in E^{\sigma}$:

$$R_{i,j}(I_{E^j}\otimes b)=(I_{E^i}\otimes b)R_{i,j},\quad R_{i+1,j+1}(I_{E^j}\otimes \mu)=(I_{E^i}\otimes \mu)R_{i,j}.$$

• Toeplitz structure: There exist $\xi^{(n)} \in E^{\otimes n}$, $n = 0, 1, ..., \text{ s.t. for } i \geq j$:

$$R_{i,j}: E^{\otimes j} \otimes \mathcal{V} \to E^{\otimes i} \otimes \mathcal{V}, \quad R_{i,j}: \xi \mapsto \xi^{(i-j)} \otimes \xi.$$

• Conversely, if $\xi^{(n)} \in E^{\otimes n}$, n = 0, 1, ..., are such that R defined as above is bounded on $\mathcal{F}^2(E, \sigma)$, then $R \in \mathcal{F}^{\infty}(E) \otimes I_{\mathcal{V}}$.

Point evaluation revisited

Set $\mathbb{D}((E^{\sigma})^*) = \{\zeta \colon \zeta^* \in E^{\sigma}, \, \|\zeta\| < 1\}$. For $\zeta \in \mathbb{D}((E^{\sigma})^*)$ define

$$\zeta^n = \zeta(I_E \otimes \zeta) \cdots (I_{E^{\otimes n-1}} \otimes \zeta) : E^{\otimes n} \otimes \mathcal{V} \to \mathcal{V}.$$

For $R \in \mathcal{F}^{\infty}(E)$ we define $\widehat{R} : \mathbb{D}((E^{\sigma})^*) \to \mathcal{B}(\mathcal{V})$ via

$$\widehat{R}(\zeta)v = \rho_{\zeta}(T)v = \sum_{n=0}^{\infty} \eta^{n}(\zeta^{(n)} \otimes v); \quad \text{and set} \ \ H^{\infty}(E,\sigma) = \{\widehat{R} \colon R \in \mathcal{F}^{\infty}(E)\}.$$

Reproducing kernel correspondences II: $\mathfrak{B} = \mathcal{B}(\mathcal{E})$

Theorem

For $K : \Omega \times \Omega \to \mathcal{B}(\mathfrak{A}, \mathcal{B}(\mathcal{E}))$ TFAE:

- (1) K is the reproducing kernel for a (RKW*C) on Ω w.r.t. $(\mathfrak{A}, \mathfrak{B})$.
- (2) K is a completely positive kernel: For all $w_i \in \Omega$, $a_i \in \mathfrak{A}$, $e_i \in \mathcal{E}$:

$$\sum_{i,j=0}^n \langle K(w_i,w_j)[a_i^*a_j]e_j,e_i\rangle \geq 0$$

(3) K has a Kolmogorov decomposition: $\exists W^*$ -corresp. \mathcal{H} w.r.t. $(\mathfrak{A}, \mathbb{C})$ and $H: \Omega \to \mathcal{B}(\mathcal{H}, \mathcal{E})$ s.t.

$$K(w', w)[a] = H(w)aH(w')^*$$

The Hardy space $H^2(E, \sigma)$

For $f=(\xi_n)_{n=0}^\infty\in\mathcal{F}^2(E,\sigma)$ we define

$$\widehat{f}: \mathbb{D}((E^{\sigma})^*) \times \sigma(\mathfrak{A})' \to \mathcal{V}, \quad \widehat{f}(\zeta, b) = \sum_{n=0}^{\infty} \zeta^n(I_{E^{\otimes n}} \otimes b)\xi_n$$

Then $H^2(E,\sigma) = \{\widehat{f} : f \in \mathcal{F}^2(E,\sigma)\}$ is a RKW*C with rep. kernel

$$\mathcal{K}_{E,\sigma}: \mathbb{D}((E^{\sigma})^*) \times \mathbb{D}((E^{\sigma})^*) \to \mathcal{B}(\sigma(\mathfrak{A})',\mathcal{B}(\mathcal{V})), \ \ \mathcal{K}_{E,\sigma}(\zeta,\zeta')[b] = \sum_{n=0}^{\infty} \zeta^n (I_{E \otimes n} \otimes b) \zeta'^{*n}$$

Main theorem

Theorem ([Muhly-Solel '08, Ball-Biswas-Fang-tH '09])

Let (E, σ) be a CR pair. For a function $F : \mathbb{D}((E^{\sigma})^*) \to \mathcal{B}(\mathcal{V})$ TFAE

- (0) $F = \widehat{R}$ for an $R \in \mathcal{F}^{\infty}(E)$ with $||R|| \le 1$;
- (2) F defines a contractive multiplication operator on $H^2(E,\sigma)$ via

$$(M_F g)(\zeta, b) = F(\zeta)g(\zeta, b) \quad (h \in H^2(E, \sigma));$$

- (3) $F = \widehat{R}$ for an $R \in \mathcal{F}^{\infty}(E)$ and for any injective *-representation $\sigma' : \mathfrak{A} \to \mathcal{B}(\mathcal{V}')$ and $\zeta' \in \mathbb{D}((E^{\sigma'})^*)$ we have $\|\widehat{R}(\zeta')\| \le 1$;
- (4) The function $K : \mathbb{D}((E^{\sigma})^*) \times \mathbb{D}((E^{\sigma})^*) \to \mathcal{B}(\sigma(\mathcal{A})', \mathcal{B}(\mathcal{V}))$

$$K(\zeta,\zeta')[b] = K_{E,\sigma}(\zeta,\zeta')[b] - F(\zeta)K_{E,\sigma}(\zeta,\zeta')[b]F(\zeta')^*$$

is a completely positive kernel;

(5) $\exists W^*$ -corresp. \mathcal{H} w.r.t. $(\sigma(\mathfrak{A})', \mathbb{C})$ and a co-isometric $\sigma(\mathfrak{A})'$ -module map

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right] : \left[\begin{array}{c} \mathcal{H} \\ \mathcal{V} \end{array}\right] \to \left[\begin{array}{c} E^{\sigma} \otimes \mathcal{H} \\ \mathcal{V} \end{array}\right]$$

so that, with $L_{\zeta}: E^{\sigma} \otimes \mathcal{H} \to \mathcal{H}$, $L_{\zeta}: \mu \otimes h \to \langle \mu, \zeta^* \rangle h$, we have

$$F(\zeta) = D + C(I - L_{\zeta}A)^{-1}L_{\zeta}B.$$

THANK YOU FOR YOUR ATTENTION

Comments

- Free semigroup case: $\mathfrak{A}=\mathbb{C}$, $E=\mathbb{C}^d$, $\Sigma:\lambda\mapsto\lambda I_{\mathcal{H}}$. Then $\sigma(\mathfrak{A})'=\mathcal{B}(\mathcal{H})$, $\mathbb{D}((E^\sigma)^*)=$ NC strict row contractions.
- Other examples: Semigroupoid (graph) algebras (Kribs-Power '04), analytic crossed products (Muhly-Solel '98).
- Completely positive kernel: In many examples positive kernel; Choi's theorem.
- Not currently covered: Schur-Agler class over the polydisk \mathbb{D}^d . No short cut, have to do $(2)\Rightarrow (3)\Rightarrow (4)$ via variations on SzNF dilation, GNS construction and HB separation.
- Current theme: NC function theory (Vinnikov-Kaliuzhnyi-Verbovetskyi '14, et al)
 – Also Muhly-Solel ('12)

