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Discrete Lax-Phillips scattering Lnu

Discrete-time Lax-Phillips scattering system
U on K unitary, G,G. C K, G L G., such that
e UG C G, N2 UG ={0};
e UG, C G., N2oU™G. = {0};
Then £ := GO UG and &, := UG, © G.. are wandering for U:

-1 o)
K=g.oHod= P Ue.onaPue
n=—o00 n=0

The scattering operator S € B(¢3(£),£(E.)) given by S = &,*, with
O ke (PeU K _oo €P(E), ke K (P UMK _o € FP(EL),
is a contractive analytic Laurent operator, with symbol F € S(&,E.) given by

F(z) = D+ 2C(h — zA) B, [ A B ] _ { Py U

c D Pg}[PH Pe. ]

The classical Schur class Lnu

Schur class

Let & and Y be Hilbert spaces. The operator-valued Schur class S(U4,)) can
be defined as the closed unit ball of H*> ({4, Y) over the open unit disk D:
functions F : D — B(U,Y) analytic on D with ||Fllec = sup,¢p [|F(2)]] < 1.

Transfer function realization
Schur class functions appear as transfer functions of dissipative systems:

5. { x(n+1) = Ax(n)+ Bu(n)

y(n) =Cx(n)+Du(n) (MEN

with contractive system matrix
A B | | X . X
cC D|"|U Yy
and transfer function Fx € S(U,Y):

Fs(z) =D +zC(I —zA)'B (z € D).

Characterizations of S(U,)) Lnu

(1) Unit ball of H*°(U,Y): F analytic on IF and ||Fljo < 1;
(2) Contractive multiplier: The multiplication operator
(Meg)(A) = F(N)g(X)
defines an operator Mg € B(H;;, H3) with |[Mg| < 1.
(3) von Neumann inequality for D: F analytic and
IF(MII<1 (TeB®H), Tl <1)
(4) Positive kernel characterization: The de Branges-Rovnyak kernel

ly — F(z)F(w)"

Kr:DxD— B(Y), Kr(z,w)= T

is a positive kernel: [F(z;, z)];—o > 0 for any z, ..., zn.

(5) Transfer function realization: There exists a unitary colligation

v=le o] a]-[5]

such that F(z) = D + zC(l — zA) " 'B.



Sketch of proof I: Easy direction (5) = (4) = (3) = (2) = (1)

(5) Transfer function = (4) positive kernel
Since F(z) = D + zC(I — zA)B with U = [£ B] unitary we can compute:

| — F(z2)F(w)" = (1 — zw)C(I — zA) (I — wA) *C*

Hence K factors as Kr(z, w) = H(z)H(w)* with H(z) = C(I — zA)™*,
making it a positive kernel.

(4) positive kernel = (3) operator points
Via a factorization Kr(z, w) = H(z)H(w)" we find

I — F(z)F(w)" = H(z)(1 — zw)H(w)",
which yields for any strict contraction T:
I —F(TF(T)" =H(T)1—-TT*)H(T)" > 0.

Hence ||F(T)|| < 1.

Sketch of proof II: Harder direction (1) = (2) = (3) = (4) = (5) @J

(1) unit ball H>® = (2) multiplication operator on H?
View H? C L% and H®® C L. Then F € H® C L™ gives

Lr: Ly — L3, (Lrg)(e") = F(e")g(e")
has |[Le|| = [|Flloc < 1.
F analytic: Lr : H; — H§; and Mg = LF|H124'
So [[Me|| < [ILF|| < 1.

(2) multiplication operator = (4) positive kernel

Again use Mf (ky ® y) = kw ® (F(w)*y) and (ky @ y, ky Q@ y') = —L—:

(I = MEME) (kw ® y), (k: @ "))
= (ko @Y, k: @y') — (kw @ (F(W)"y), k. @ (F(2)*y'))
= <KF(Z? W)yv.y/>

[|IMEe|| <0 gives | — MeMg > 0 and, by linearity, Kr factors as

Ke(z, w) = H(z)H(w)" with H(z) = (k: ® Iy)* (I — MeM})?.

(2) = (3) = (4) via SzNF dilation, GNS construction and HB separation.

Ry

Sketch of proof I: Easy direction (5) = (4) = (3) = (2) = (1) Lnu

(3) operator points = (2) multiplication operator on H?
Let S = M, : H> — H? be the forward shift operator. Then for r € (0,1):

[rSI|=r<1 and F(rS)— Mk strongly as r — 1.
Thus
1> [|F(rS)I| = [IMe||  asr— 1.

(2) multiplication operator on H? = (1) unit ball H>
Let k,, be de reproducing kernel elements of H?: k,(z) = —=. Then

l1—zw"

Mg (kv @ y) = ka @ (F(W)'y) (weD,ye)).
Since ||[Mg|| < 1, we have

lkw @ (F(W)* Y)II < llkw @ y|l, hence [[F(w) y|l <Ilyl (y€).

Sketch of proof II: Harder direction (1) = (2) = (3) = (4) = (5) @J

(4) positive kernel = (5) Transfer function

Option (1): Construct the unitary canonical model colligation via the de
Branges-Rovnyak reproducing kernel Hilbert space associated with Kr.

Option (2): Lurking isometry argument. Via factorization
Kr(z,w) = H(z)H(w)" we find

I — F(z)F(w)" = (1 —zw)H(z)H(w)".
Reorder: | + H(z)H(w)* = F(z)F(w)* + zwH(z)H(w)* and define a partial

isometry

Y { H(w)"y ] _ { wH(w)"y } (weD,yey).

y F(w)*y

Extend V* to a unitary colligation U = [2 B] s.t. U* satisfies the same
identity. Solve for H and F:

H(z) = C(I — zA)™", F(z) = D+ zC(l — zA) 'B.



Multivariable generalizations | lpu

Drury-Arveson space (Drury, Arveson, ...)
Variation on H? given by the RKHS H(Kj,) of the Szegd kernel

1

oW (z,weBg={zeC’: |z]| <1})

Ka(z,w) =

Schur class functions: F : By — B(U,)) analytic such that
Mr : H(Kg) @ U — H(Kg) ® Y contractively.
What remains (for d > 2):

(1) = (2 = 3) = (4 = (v
Comments
(1) # (2): ||IF(2)|| £ 1, z € By not enough; d = 2 Ando's dilation theorem

(3) evaluation in commutative row contractions.

(4) = (5): Canonical model not unique; via solutions of Gleason problem.

(5) Transfer function form
F(z)=D+ C(I — Z(2)A)Z(z)B

with Z(z) = [ z1lx zglx |, A X = X B U— X

W*-correspondence approach to H* (Muhly-Solel) lpu

W* correspondence

A W*-correspondence w.r.t. a pair (2,B) of von Neumann algebras is a
bimodule E with left 2-action and right B-action with B-valued inner product
{,):ExE— B satisfyingfor \€e C,aec A, be B, n,7,n" €E:

An+n',1") = Xn,n") + pin',n");
(m-bn'y=mn)b,  (a-nn)=ma -n)
(m'sm)™ = (n,n');

(mn,m)e > 0; (with equality iff n = 0)

1
such that E is a Banach space with respect to the norm ||n||e := |[{(n, n)el 4.
and E self-dual:

TeB(E,B) <= Tn=/{(n,nr) for somenr € E.

Correspondence-representation pair and the Fock space

A correspondence-representation pair (E, o) consists of a W™-correspondence
E w.r.t. (2(,2) and an faithful *-representation o : 2 — B(V).

FHE)=EPE®" and F(E,0)=F(E)®, V.
n=0
N.B. F2(E) and F?(E, o) are W*-corresp. w.r.t. (2,2L), resp. (A, C).

Multivariable generalizations Il lpu

Free semigroup algebras (Popescu, Davidson, Kribs, Pitts, ...)

Functions: formal power series in d noncommutative indeterminates; powers
indexed by the free semigroup Fy in d letters {1,...,d}. The Hardy space

H*(Fq) = {f(z) = Z foaz™: Z Ifl? < o0},

acFy acFy

is a NCFRKHS (noncommutative formal RKHS) with Szegd kernel

Kane(z, w) = Zzw

aEFy

Schur class: Formal powers series F with B(U,Y) coefficients that define
contractive multipliers Mg : H*(F4) @ U — H*(F4) ® V. Then (d > 2):

(2) <= 38) = (4) = (v
Comments
e (3) evaluation in noncommutative row contractions.
e (5) Transfer function same form but with NC indeterminates.

e Drury-Arveson setting reappears when restricting to commutative
row-contractions (abelianization).

W*-correspondence approach to H* (Muhly-Solel) lpu

Definition of F>°(E)
Let the left 2A-action on F2(E) be given by a normal *-rep. ¢ : A — B(F?(E))
and for n € E define the creation operator

C, € B(F*(E)), <@g">> —0@@(77@5”)) (" e E®).
Then F°°(E) is the ultra-weak closure of the algebra generated by ¢(a),
a€, and C,, n € E. Also T;(E) is the norm closure (NC disc algebra).

Point-evaluation maps

A linear, completely contractive bimodule map T : E — B(V) generates a
completely contractive representation p = pt of 7.(E) on B(V) via

o(e(a)) =o(a), p(C,)=T(n) (and all are obtained in this way)

which may or may not extend to F°°(E).
Also, T induces a contractive bi-module maps from {7+ : E® V — V via

Crin@v) = T(n)v (and all are obtained in this way),

and p = pr extends to F°°(E) at least whenever ||7| < 1.



Intertwining characterization Lnu Toeplitz structure Lnu

Toeplitz structure characterization
Dual correspondence-representation pair Let R = [Rij]75—0 € B(F*(E,o)). Then R € F*(E)® Iy iff
Let ¢t : o(A)" — B(V) the embedding *-representation and e R lower triangular: R;; =0 if i < j;

E°={u:V = E®V: ua bi-module map w.r.t. 21}. e Local intertwining structure: For all b € o()', p € E”:

Then E? is a W*-correspondence w.r.t. (o(2)’, o (2A)’): Rij(lei © b) = (Iei @ B)Rij,  Risajn(le © p) = (lei @ p)Rij.
(o iy =, b-p-b = (e ® b)ub e Toeplitz structure: There exist f(") €E® n=0,1,... st fori>j:
] ®i . (i=4)
and (E?,¢) is a CR pair which is dual to the CR pair (E, o). Rij: EZ @V EZ @V, Rij:&—§ ®¢.

o Conversely, if & € E®" n=0,1,..., are such that R defined as above is

| . h N
ntertwining characterization bounded on F2(E, o), then R € F*(E) ® Iy.

For s € E”, define a dual creation operator C,, on F>(E, o) by

R o ~ Point evaluation revisited
Cu(@20t™) =00 @P(CE™), M@ @meV) =1®- - @m @ pv. Set D((E?)*) = {¢: ¢* € E7, ||¢]| < 1}. For ¢ € D((E”)*) define
=0

("=Cle®C) - (lean1®C): E®" @V = V.
Then R € B(F*(E,0)) is in F<(E) ® l if and only if it commutes with
~ For R € F°(E) we define R : D((E?)*) — B(V) via
I}-Z(E)@b, bEU(Ql)/, Clh me E°. N
R(¢)v = pc( T)V_Zn (¢ @v); and set H®(E,0) = {R: R € F~(E)}.

n=0
Reproducing kernel correspondences | Lnu Reproducing kernel correspondences II: 8 = B(€) Lnu
Reproducing kernel correspondences Theorem
A reproducing kernel W*-correspondences (RKW*C) on a set Q w.r.t. (2, B) For K: Q x Q — B(2, B(E)) TFAE:
is a W*-correspondence G w.r.t. (2,B) s.t. f € G is a functions (1) K is the reproducing kernel for a (RKW*C) on Q w.r.t. (2, B).

f:Qx A= and there exist ky € G, w € 2 st. (2) K is a completely positive kernel: For all w; € Q, a; € 2, e € &:
> (K(wi, wy)la; ajlej, e) > 0
The reproducing kernel is the map K : Q x Q — B(2, B) given by ij=0

, (3) K has a Kolmogorov decomposition:3 W*-corresp. H w.r.t. (2, C) and
K(w, w)la] = kw(w, a). H:Q - B(H,E) st

(a-f,kw)e = f(w,a).

For K : 2 x Q — B(2,8) TFAE ([BBLS04] (2) < (3); [BBFtH09]; [Marx17]): K(w', w)lal = H(w)ak(w')"

(1) K is the reproducing kernel for a RKW*C on Q w.r.t. (2, ).

. iy The Hardy space H?(E, o)
(2) K is a completely positive kernel: For all w; € Q, a; € 2, b; € B:

n For f = (£€,)32 € F2(E, o) we define N
Z bi K(wi, wj)[aj aj]bj > 0 FD((E7)) x o(2) =V, F(C,b) = ZC"(’E@m  b)é,

i,j=0

~ n=0
and K(w,w’) € B(2, B) is weak-* continuous for all w,w’ € Q. Then H*(E,0) = {f: f € F*(E,0)} is a RKW*C with rep. kernel
(3) K has a Kolmogorov decomposition: 3 W*-corresp. G w.r.t. (2, B) and o s n
ky, € G, w € Q, s.t. K(WI, W)[a] = (akW,kW/). Keo : D((E ) )XD((E ) ) - B(O(Q‘)/,B(V)), Ke U(C C [b] Z§ IE®"®b)CI

n=0



Main theorem

Theorem ([Muhly-Solel '08, Ball-Biswas-Fang-tH '09])
Let (E,o) be a CR pair. For a function F : D((E°)*) — B(V) TFAE

(0) F =R foran R € F>(E) with |R| < 1;
(2) F defines a contractive multiplication operator on H*(E, o) via

(Mrg)(¢, b) = F(Q)g(¢,b)  (h€ H(E,0));
3) F= Rforan R e F°(E) and for any injective *-representation
o' A — B(V') and ¢’ € D((E”)*) we have ||R(¢)|| < 1;
(4) The function K : D((E?)*) x D((E?)*) — B(a(A)’, B(V))
K(¢,¢)Ibl = Keo (¢, C)[bT — F(S)KE.o (¢, ¢)IBIF(C)
is a completely positive kernel;

(5) 3 W*-corresp. H w.r.t. (¢()’,C) and a co-isometric o(2l)’-module map

A B| | H . E°®H
c D" |V 1%

so that, with L¢ : EC @ H — H, L¢ - p® h — {(u, (*)h, we have
F(¢)=D+ C(I — LcA) 'L¢B.

THANK YOU FOR YOUR ATTENTION

Ry

Comments @J

Free semigroup case: A =C, E=C% T : X — AMy.
Then o (1) = B(H), D((E?)*) = NC strict row contractions.

Other examples: Semigroupoid (graph) algebras (Kribs-Power '04),
analytic crossed products (Muhly-Solel '98).

Completely positive kernel: In many examples positive kernel; Choi's
theorem.

Not currently covered: Schur-Agler class over the polydisk D¢.
No short cut, have to do (2) = (3) = (4) via variations on SzNF dilation,
GNS construction and HB separation.

Current theme: NC function theory (Vinnikov-Kaliuzhnyi-Verbovetskyi '14,
et al)— Also Muhly-Solel ('12)



