Translation invariant Dirichlet forms in the context of locally compact quantum groups based on joint work with A. Viselter

Adam Skalski

IMPAN, Warsaw

Operator Algebras and Quantum Dynamics Pretoria 13 July 2017

General aim

Our aim will be a study of a certain class of (noncommutative) probabilistic evolutions, understood as Markov semigroups on von Neumann algebras and associated L^{p} -spaces associated to locally compact quantum groups and describe their generators via quantum Dirichlet forms with specific invariance properties.

Classical Markov semigroups and Dirichlet forms

 (X, μ) – classical measure space

Definition

A Markov semigroup $(P_t)_{t\geq 0}$ on (X, μ) is a family of operators acting on the von Neumann algebra $L^{\infty}(X, \mu)$ and satisfying the following conditions:

•
$$P_0 = I$$
, $P_{t+s} = P_t \circ P_s$, $s, t \ge 0$;

•
$$w^* - \lim_{t\to 0^+} P_t(f) = f$$
, $f \in L^{\infty}(X, \mu)$;

• $\forall_{t\geq 0} P_t$ is a contractive positive operator and $\mu \circ P_t \leq \mu$.

Markov semigroups as above yield contractive C_0 -semigroups on all spaces $L^p(X,\mu)$, $p \in [1,\infty)$; we will call the semigroup symmetric if the corresponding operators on $L^2(X,\mu)$ consists of self-adjoint operators.

Classical Markov semigroups - continued

Markov semigroups can be studied via their $L^{p}(X, \mu)$ -generators; naturally the easiest case is that of $L^{2}(X, \mu)$. Assume that $(P_{t})_{t\geq 0}$ is a symmetric Markov semigroup and consider

$$Q(f) = \lim_{t \to 0^+} rac{1}{t} \int_X ar{f}(f - P_t f) d\mu, \quad f \in \operatorname{Dom}(Q) \subset \mathcal{L}^2(X, \mu)$$

This is a Dirichlet form: i.e. a densely defined quadratic form, which is closed, real and if we denote by P_{\wedge} the projection from $L^2(X, \mu)_{\mathbb{R}}$ onto $\{f \in L^2(X, \mu)_{\mathbb{R}} : 0 \le f \le 1\}$ then

$$Q(P_{\wedge}f) \leq Q(f), \ \ f \in \mathsf{Dom}(Q)_{\mathbb{R}}.$$

Theorem (Beurling-Deny)

There is a 1-1 correspondence between symmetric Markov semigroups on $L^{\infty}(X, \mu)$ and Dirichlet forms on $L^{2}(X, \mu)$.

Convolution semigroups of measures and Lévy processes

G – locally compact group

A family $(\mu_t)_{t \ge 0_+}$ of probability measures on G is called a convolution semigroup of measures if

These are precisely distributions of Lévy processes (processes with independent, identically distributed increments). Further we can define

$$(P_t(f))(g) = \int_G f(gh)d_\mu(h), \quad f \in L^\infty(G).$$

to get the Markov semigroup of the process. Corresponding Dirichlet forms are characterised by the translation invariance.

Quantum Markov semigroups

M - von Neumann algebra, with a fixed normal semifinite faithful weight ϕ

Definition

An operator $\mathcal{T}:M\to M$ will be called Markov if it is a positive contraction and in addition we also have the condition

 $\phi \circ T \leq \phi.$

Quantum Markov semigroups – L^p-versions

Tracial case – L^p -spaces are certain completions of M, with the $||x||_p := (\tau(|x|)^p)^{\frac{1}{p}}$.

Non-tracial state case – L^p -spaces are either interpolation spaces (which requires embedding M into $L^1(M) = M_*$) (Araki, Kosaki, Izumi) or certain concrete spaces of operators (Hilsum, Haagerup).

Non-tracial weight case:

 $L^{p}(M, \phi)$ – Haagerup L^{p} -space. We consider symmetric embeddings $\iota_{p} : M^{p} \rightarrow L^{p}(M)$: these are informally defined as

$$\iota_p(x) = D^{\frac{1}{2p}} x D^{\frac{1}{2p}}, \quad x \in \mathsf{M}^{(p)}.$$

Here $M^{(p)} \subset M$ is 'the set of *p*-integrable elements' and *D* can be thought of as 'the density matrix of the weight' – and formally is the unbounded generator of the implementing unitary group of the modular automorphism group of ϕ in the core of M.

Quantum Markov semigroups – L^p-versions continued

Given a map $T : M \to M$ we will say it is KMS-symmetric if its KMS implementation, the map $T^{(2)} : \iota_2(M^{(2)}) \to L^2(M, \phi)$

 $T^{(2)}(\iota_2(x)) = \iota_2(Tx)$

extends to a *bounded self-adjoint* operator. Note that we require in particular that $T^{(2)}(\iota_2(M^{(2)})) \subset \iota_2(M^{(2)})$.

Definition

A (quantum) KMS-symmetric Markov semigroup is a weak*-continuous semigroup $(T_t)_{t\geq 0^+}$ of normal KMS-symmetric Markov maps on M.

In fact *KMS*-symmetry plus being a positive contraction itself yields the weight inequality. We say that the family as above is completely Markov, if the same properties hold for $P_t \otimes id_{M_n}$ for all $n \in \mathbb{N}$.

Quantum Dirichlet forms

Definition (Cipriani, Goldstein+Lindsay)

A quantum Dirichlet form for (M, ϕ) is a densely defined closed quadratic form on $L^2(M)$ which is real (in a suitable sense) and satisfies the condition

 $Q(P_{\wedge}x) \leq Q(x), \ x \in \mathsf{Dom}(Q_{\mathbb{R}})$

where P_{\wedge} is the orthogonal projection from $L^{2}(M)_{\mathbb{R}}$ onto the 'interval' $[0, D^{\frac{1}{2}}]$.

Theorem (Cipriani, Goldstein+Lindsay, Viselter+AS)

There is a 1-1 correspondence between completely Markov *KMS*-symmetric semigroups and quantum completely Dirichlet forms.

LCQGs

 $\mathbb G$ – locally compact quantum group à la Kustermans-Vaes

 $L^\infty(\mathbb{G})$ – the von Neumann algebra, together with the coproduct (carrying all the information about $\mathbb{G})$

 $\Delta: L^\infty(\mathbb{G}) \to L^\infty(\mathbb{G})\overline{\otimes} L^\infty(\mathbb{G})$

and a canonical *right Haar weight* ϕ C₀(G) – the corresponding (reduced) C*-object C₀^u(G) – the universal version of C₀(G),

 $L^{2}(\mathbb{G})$ – the GNS Hilbert space of the right invariant Haar weight ϕ on $L^{\infty}(\mathbb{G})$ $L^{1}(\mathbb{G})$ – predual of $L^{\infty}(\mathbb{G})$, with a natural Banach algebra structure.

$$\mathsf{C}_{\mathsf{0}}(\mathbb{G}) \subset \mathsf{L}^{\infty}(\mathbb{G})$$
$$\mathsf{L}^{2}(\mathbb{G}) \approx \mathsf{L}^{2}(\mathsf{L}^{\infty}(\mathbb{G}), \phi)$$

Dual groups

Each LCQG $\mathbb G$ admits the dual LCQG $\widehat{\mathbb G}.$

$$L^{\infty}(\widehat{\mathbb{G}}), C_{0}(\widehat{\mathbb{G}})$$
 – subalgebras of $B(L^{2}(\mathbb{G}))$

In particular for G – locally compact group

$$L^{\infty}(\widehat{G}) = VN(G), \quad C_0(\widehat{G}) = C_r^*(G), \quad C_0^u(\widehat{G}) = C^*(G)$$

We sometimes write

$$L^{\infty}(\widehat{\mathbb{G}}) = \mathsf{VN}(\mathbb{G}), \quad \mathsf{C}_0(\widehat{\mathbb{G}}) = C^*_r(\mathbb{G}), \quad \mathsf{C}^u_0(\widehat{\mathbb{G}}) = C^*(\mathbb{G})$$

Simplifications in the compact case

Definition

 \mathbb{G} is said to be compact if $C_0(\mathbb{G})$ is unital (so written as $C(\mathbb{G})$), equivalently, the weight ϕ is a state.

Any compact quantum group can be described purely algebraically via the Hopf *-algebra $\operatorname{Pol}(\mathbb{G}) \subset C(\mathbb{G})$, with the counit ϵ .

Convolution semigroups of states on compact quantum groups

A family $(\mu_t)_{t\geq 0_+}$ of states on ${\rm Pol}(\mathbb{G})$ is called a convolution semigroup of states if

•
$$\mu_{t+s} = \mu_t \star \mu_s := (\mu_t \otimes \mu_s) \circ \Delta, \quad t, s \ge 0;$$

• $\mu_t(a) \xrightarrow{t \to 0^+} \mu_0(a) := \epsilon(a), \quad a \in \operatorname{Pol}(\mathbb{G}).$

Such convolution semigroups admit generating functionals:

$$L(a) = \lim_{t \to 0^+} \frac{\mu_t(a) - \epsilon(a)}{t}, \quad a \in \operatorname{Pol}(\mathbb{G}).$$

We associate to it a convolution semigroup of operators $(R_{\mu_t})_{t\geq 0_+}$ on $\operatorname{Pol}(\mathbb{G})$:

$$R_{\mu_t} := (\mathsf{id} \otimes \mu_t) \circ \Delta$$

These extend to operators on $L^{\infty}(\mathbb{G})$ which form a Markov semigroup. The corresponding Dirichlet forms contain $Pol(\mathbb{G})$ in the domain and can be characterised/studied in the purely algebraic manner (see Cipriani, Franz, Kula).

Adam Skalski (IMPAN, Warsaw)

Convolution semigroups of states revisited

 \mathbb{G} – locally compact quantum group

A family $(\mu_t)_{t\geq 0_+}$ of states on $C^u_0(\mathbb{G})$ is called a convolution semigroup of states if

We no longer have the 'algebraic domain' such as $Pol(\mathbb{G})$. Generating functionals are densely defined, but that is all we know a priori.

Convolution semigroups of operators

The following is essentially a consequence of known results of the last 10 or so years, due to Daws, Junge, Neufang, Ruan and others.

Theorem

There exist 1 - 1 correspondences between:

- convolution semigroups $(\mu_t)_{t>0}$ of states of $C_0^u(\mathbb{G})$;
- C_0 -semigroups $(T_t^u)_{t\geq 0}$ of completely positive maps of norm 1 on $C_0^u(\mathbb{G})$ that commute with the *left translation operators*;

(a) semigroups $(T_t)_{t\geq 0}$ of normal, unital, completely positive maps on $L^{\infty}(\mathbb{G})$ that are point–ultraweakly continuous at 0^+ , and that satisfy $\Delta \circ T_t = (T_t \otimes id) \circ \Delta$ for every $t \geq 0$;

⊗ C_0 -semigroups $(M_t)_{t\geq 0}$ of norm 1 left module maps on L¹(G) with completely positive adjoints.

Convolution operators - revisited once again

 $C_0^u(\mathbb{G})$ admits a canonical involutive operator \mathbb{R}^u , so called universal unitary antipode (playing the role of the inverse operation).

Theorem

Let $\mu \in S(C_0^u(\mathbb{G}))$. The operator $R_\mu : L^{\infty}(\mathbb{G}) \to L^{\infty}(\mathbb{G})$ is unital, completely positive, ϕ -preserving. The map R_μ is KMS-symmetric iff $\mu = \mu \circ \mathbb{R}^u$. Its KMS implementation (acting on $L^2(\mathbb{G})$) is always bounded and belongs to $L^{\infty}(\hat{\mathbb{G}})$.

Main result

We can now add the Dirichlet form part.

Theorem

Let $\mathbb G$ be a locally compact quantum group. There exist 1-1 correspondences between:

- w^{*}-continuous convolution semigroups (µ_t)_{t≥0} of R^u-invariant states of C^u₀(𝔅);
- C_0^* -semigroups $(T_t)_{t\geq 0}$ of normal, unital, completely positive maps on $L^{\infty}(\mathbb{G})$ that are KMS-symmetric with respect to ϕ and satisfy $\Delta \circ T_t = (T_t \otimes id) \circ \Delta$ for every $t \geq 0$;
- **(a)** completely Dirichlet forms Q on $L^2(\mathbb{G})$ with respect to ϕ that are invariant under $\mathcal{U}(L^{\infty}(\hat{\mathbb{G}})')$ (modulo multiplication of forms by a positive number).

Applications

Theorem

Let \mathbb{G} be a second countable locally compact quantum group. Then $\hat{\mathbb{G}}$ has Property (T) of Kazhdan if and only if every convolution semigroup of \mathbb{R}^{u} -invariant states on $C_{0}^{u}(\mathbb{G})$ has a bounded generator.

Theorem

Let \mathbb{G} be a second countable locally compact quantum group. Then $\hat{\mathbb{G}}$ has the Hagerup property if and only if there exists a convolution semigroup of \mathbb{R}^{u} -invariant states on $C_{0}^{u}(\mathbb{G})$ such that the L^{2} -implementations of the associated convolution operators, acting on $L^{2}(\mathbb{G})$, in fact belong to $C_{0}(\hat{\mathbb{G}})$.

Examples

- Commutative case (G-classical): convolution semigroups on L[∞](G) correspond to Lévy processes on G, are described via the Lévy-Khintchine formula.
- Dual case (G-classical, L[∞](Ĝ) = VN(G)): convolution semigroups are of the form

$$P_t(\lambda_g) = e^{t\psi(g)}\lambda_g, \ g \in G$$

where $\psi: G \to \mathbb{R}$ is a conditionally positive-definite function. Corresponding Dirichlet form on $L^2(\hat{G}) = L^2(G)$ as expected is equal to

$$Q(f)=\int_G |f(g)|^2\psi(g)dg, \ \ f\in {
m Dom}(Q).$$

Examples continued – cocycle twists

Let \mathbb{G} – locally compact quantum group, $\Omega \in L^{\infty}(\mathbb{G})\overline{\otimes}L^{\infty}(\mathbb{G})$ be a unitary 2-cocycle on \mathbb{G} . Then (by a result of De Commer) we can define \mathbb{G}_{Ω} via

 $L^{\infty}(\mathbb{G}_{\Omega}) := L^{\infty}(\mathbb{G}),$

$$\Delta_\Omega(m)=\Omega^*\Delta(m)\Omega, \quad m\in\mathsf{L}^\infty(\mathbb{G}_\Omega).$$

Theorem

If $(T_t)_{t\geq 0^+}$ is a convolution semigroup of operators on $L^{\infty}(\mathbb{G})$ in the sense studied earlier, and $(T_t \otimes id)(\Omega) = \Omega$ then $(T_t)_{t\geq 0^+}$ is also a convolution semigroup of operators on $L^{\infty}(\mathbb{G}_{\Omega})$.

Example of application: start from $\mathbb{G} = \hat{G}$, with *G* containing an abelian subgroup *H* admitting a non-trivial 2-cocycle and use a conditionally positive-definite function on *G* which vanishes on *H*.

Specifically: we can build interesting convolution semigroups on quantized Heisenberg groups or on quantized $SL_2(\mathbb{C})$.

Perspectives

- Cipriani and Sauvageot showed that in the tracial case all quantum Dirichlet forms (subject to technical conditions) arise canonically from certain derivations; this takes a simpler form in the case of convolution semigroups on compact quantum groups, and is related to Lévy-Khintchine decomposition. Is there such a result in the state/weight case?
- classical results of Hunt for Lie groups and then Heyer for general lc groups show that for each convolution semigroup say on $C_0(G)$ the domain of its generator contains a canonical subalgebra. Can we have a result of this form for locally compact quantum groups?

References

Noncommutative Dirichlet forms:

F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, JFA, 1997

S.Goldstein and M.Lindsay, Markov semigroups KMS-symmetric for a weight, Math. Ann., 1999.

Dirichlet forms for convolution semigroups of states - compact case

F. Cipriani, U. Franz and A. Kula, Symmetries of Lévy processes on compact quantum groups, their Markov semigroups and potential theory, JFA, 2014

This talk:

A. Viselter and A.S., Translation invariant Dirichlet forms and locally compact quantum groups, in preparation