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General aim

Our aim will be a study of a certain class of (noncommutative) probabilistic
evolutions, understood as Markov semigroups on von Neumann algebras and
associated Lp-spaces associated to locally compact quantum groups and describe
their generators via quantum Dirichlet forms with specific invariance properties.
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Classical Markov semigroups and Dirichlet forms

(X , µ) – classical measure space

Definition

A Markov semigroup (Pt)t≥0 on (X , µ) is a family of operators acting on the von
Neumann algebra L∞(X , µ) and satisfying the following conditions:

P0 = I , Pt+s = Pt ◦ Ps , s, t ≥ 0;

w∗ − limt→0+ Pt(f ) = f , f ∈ L∞(X , µ);

∀t≥0 Pt is a contractive positive operator and µ ◦ Pt ≤ µ.

Markov semigroups as above yield contractive C0-semigroups on all spaces
Lp(X , µ), p ∈ [1,∞); we will call the semigroup symmetric if the corresponding
operators on L2(X , µ) consists of self-adjoint operators.
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Classical Markov semigroups – continued

Markov semigroups can be studied via their Lp(X , µ)-generators; naturally the
easiest case is that of L2(X , µ). Assume that (Pt)t≥0 is a symmetric Markov
semigroup and consider

Q(f ) = lim
t→0+

1

t

∫
X

f̄ (f − Pt f )dµ, f ∈ Dom(Q) ⊂ L2(X , µ)

This is a Dirichlet form: i.e. a densely defined quadratic form, which is closed,
real and if we denote by P∧ the projection from L2(X , µ)R onto
{f ∈ L2(X , µ)R : 0 ≤ f ≤ 1} then

Q(P∧f ) ≤ Q(f ), f ∈ Dom(Q)R.

Theorem (Beurling-Deny)

There is a 1-1 correspondence between symmetric Markov semigroups on
L∞(X , µ) and Dirichlet forms on L2(X , µ).
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Convolution semigroups of measures and Lévy processes

G – locally compact group

A family (µt)t≥0+ of probability measures on G is called a convolution semigroup
of measures if

i µt+s = µt ? µs :, t, s ≥ 0;

ii µt(f )
t→0+

−→ µ0(f ) := f (e), f ∈ C0(G ).

These are precisely distributions of Lévy processes (processes with independent,
identically distributed increments). Further we can define

(Pt(f ))(g) =

∫
G

f (gh)dµ(h), f ∈ L∞(G ).

to get the Markov semigroup of the process. Corresponding Dirichlet forms are
characterised by the translation invariance.
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Quantum Markov semigroups

M - von Neumann algebra, with a fixed normal semifinite faithful weight φ

Definition
An operator T : M→ M will be called Markov if it is a positive contraction and
in addition we also have the condition

φ ◦ T ≤ φ.
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Quantum Markov semigroups – Lp-versions

Tracial case – Lp-spaces are certain completions of M, with the

‖x‖p := (τ(|x |)p)
1
p .

Non-tracial state case – Lp-spaces are either interpolation spaces (which requires
embedding M into L1(M) = M∗) (Araki, Kosaki, Izumi) or certain concrete spaces
of operators (Hilsum, Haagerup).

Non-tracial weight case:

Lp(M, φ) – Haagerup Lp-space. We consider symmetric embeddings
ιp : Mp → Lp(M) : these are informally defined as

ιp(x) = D
1

2p xD
1

2p , x ∈ M(p).

Here M(p) ⊂ M is ‘the set of p-integrable elements’ and D can be thought of as
‘the density matrix of the weight’ – and formally is the unbounded generator of
the implementing unitary group of the modular automorphism group of φ in the
core of M.
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Quantum Markov semigroups – Lp-versions continued

Given a map T : M→ M we will say it is KMS-symmetric if its KMS
implementation, the map T (2) : ι2(M(2))→ L2(M, φ)

T (2)(ι2(x)) = ι2(Tx)

extends to a bounded self-adjoint operator.
Note that we require in particular that T (2)(ι2(M(2))) ⊂ ι2(M(2)).

Definition

A (quantum) KMS-symmetric Markov semigroup is a weak∗-continuous
semigroup (Tt)t≥0+ of normal KMS-symmetric Markov maps on M.

In fact KMS-symmetry plus being a positive contraction itself yields the weight
inequality. We say that the family as above is completely Markov, if the same
properties hold for Pt ⊗ idMn for all n ∈ N.
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Quantum Dirichlet forms

Definition (Cipriani, Goldstein+Lindsay)

A quantum Dirichlet form for (M, φ) is a densely defined closed quadratic form on
L2(M) which is real (in a suitable sense) and satisfies the condition

Q(P∧x) ≤ Q(x), x ∈ Dom(QR)

where P∧ is the orthogonal projection from L2(M)R onto the ‘interval’ [0,D
1
2 ].

Theorem (Cipriani, Goldstein+Lindsay, Viselter+AS)

There is a 1-1 correspondence between completely Markov KMS-symmetric
semigroups and quantum completely Dirichlet forms.
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LCQGs

G – locally compact quantum group à la Kustermans-Vaes

L∞(G) – the von Neumann algebra, together with the coproduct (carrying all the
information about G)

∆ : L∞(G)→ L∞(G)⊗L∞(G)

and a canonical right Haar weight φ

C0(G) – the corresponding (reduced) C∗-object

Cu
0(G) – the universal version of C0(G),

L2(G) – the GNS Hilbert space of the right invariant Haar weight φ on L∞(G)

L1(G) – predual of L∞(G), with a natural Banach algebra structure.

C0(G) ⊂ L∞(G)

L2(G) ≈ L2(L∞(G), φ)
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Dual groups

Each LCQG G admits the dual LCQG Ĝ.

L∞(Ĝ), C0(Ĝ) – subalgebras of B(L2(G))

In particular for G – locally compact group

L∞(Ĝ ) = VN(G ), C0(Ĝ ) = C∗r (G ), Cu
0(Ĝ ) = C∗(G )

We sometimes write

L∞(Ĝ) = VN(G), C0(Ĝ) = C∗r (G), Cu
0(Ĝ) = C∗(G)
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Simplifications in the compact case

Definition

G is said to be compact if C0(G) is unital (so written as C(G)), equivalently, the
weight φ is a state.

Any compact quantum group can be described purely algebraically via the Hopf
*-algebra Pol(G) ⊂ C(G), with the counit ε.
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Convolution semigroups of states on compact quantum
groups
A family (µt)t≥0+ of states on Pol(G) is called a convolution semigroup of states
if

i µt+s = µt ? µs := (µt ⊗ µs) ◦∆, t, s ≥ 0;

ii µt(a)
t→0+

−→ µ0(a) := ε(a), a ∈ Pol(G).

Such convolution semigroups admit generating functionals:

L(a) = lim
t→0+

µt(a)− ε(a)

t
, a ∈ Pol(G).

We associate to it a convolution semigroup of operators (Rµt )t≥0+ on Pol(G):

Rµt := (id⊗ µt) ◦∆

These extend to operators on L∞(G) which form a Markov semigroup. The
corresponding Dirichlet forms contain Pol(G) in the domain and can be
characterised/studied in the purely algebraic manner (see Cipriani, Franz, Kula).
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Convolution semigroups of states revisited

G – locally compact quantum group

A family (µt)t≥0+ of states on Cu
0(G) is called a convolution semigroup of states

if

i µt+s = µt ? µs := (µt ⊗ µs) ◦∆, t, s ≥ 0;

ii µt(a)
t→0+

−→ µ0(a) := ε(a), a ∈ Cu
0(G).

We no longer have the ‘algebraic domain’ such as Pol(G). Generating functionals
are densely defined, but that is all we know a priori.
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Convolution semigroups of operators

The following is essentially a consequence of known results of the last 10 or so
years, due to Daws, Junge, Neufang, Ruan and others.

Theorem
There exist 1− 1 correspondences between:

i convolution semigroups (µt)t≥0 of states of Cu
0(G);

ii C0-semigroups (T u
t )t≥0 of completely positive maps of norm 1 on Cu

0(G)
that commute with the left translation operators;

iii semigroups (Tt)t≥0 of normal, unital, completely positive maps on L∞(G)

that are point–ultraweakly continuous at 0+, and that satisfy
∆ ◦ Tt = (Tt ⊗ id) ◦∆ for every t ≥ 0;

iv C0-semigroups (Mt)t≥0 of norm 1 left module maps on L1(G) with
completely positive adjoints.
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Convolution operators – revisited once again

Cu
0(G) admits a canonical involutive operator Ru, so called universal unitary

antipode (playing the role of the inverse operation).

Theorem

Let µ ∈ S(Cu
0(G))). The operator Rµ : L∞(G)→ L∞(G) is unital, completely

positive, φ-preserving. The map Rµ is KMS-symmetric iff µ = µ ◦ Ru. Its KMS

implementation (acting on L2(G)) is always bounded and belongs to L∞(Ĝ).
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Main result

We can now add the Dirichlet form part.

Theorem
Let G be a locally compact quantum group. There exist 1− 1 correspondences
between:

i w∗-continuous convolution semigroups (µt)t≥0 of Ru-invariant states of
Cu

0(G);

ii C∗0 -semigroups (Tt)t≥0 of normal, unital, completely positive maps on
L∞(G) that are KMS-symmetric with respect to φ and satisfy
∆ ◦ Tt = (Tt ⊗ id) ◦∆ for every t ≥ 0;

iii completely Dirichlet forms Q on L2(G) with respect to φ that are invariant
under U(L∞(Ĝ)′) (modulo multiplication of forms by a positive number).
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Applications

Theorem

Let G be a second countable locally compact quantum group. Then Ĝ has
Property (T) of Kazhdan if and only if every convolution semigroup of
Ru-invariant states on Cu

0(G) has a bounded generator.

Theorem

Let G be a second countable locally compact quantum group. Then Ĝ has the
Hagerup property if and only if there exists a convolution semigroup of
Ru-invariant states on Cu

0(G) such that the L2-implementations of the associated
convolution operators, acting on L2(G), in fact belong to C0(Ĝ).
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Examples

Commutative case (G -classical): convolution semigroups on L∞(G )
correspond to Lévy processes on G , are described via the Lévy-Khintchine
formula.

Dual case (G -classical, L∞(Ĝ ) = VN(G )): convolution semigroups are of
the form

Pt(λg ) = etψ(g)λg , g ∈ G

where ψ : G → R is a conditionally positive-definite function. Corresponding
Dirichlet form on L2(Ĝ ) = L2(G ) as expected is equal to

Q(f ) =

∫
G

|f (g)|2ψ(g)dg , f ∈ Dom(Q).
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Examples continued – cocycle twists

Let G – locally compact quantum group, Ω ∈ L∞(G)⊗L∞(G) be a unitary
2-cocycle on G. Then (by a result of De Commer) we can define GΩ via

L∞(GΩ) := L∞(G),

∆Ω(m) = Ω∗∆(m)Ω, m ∈ L∞(GΩ).

Theorem

If (Tt)t≥0+ is a convolution semigroup of operators on L∞(G) in the sense
studied earlier, and (Tt ⊗ id)(Ω) = Ω then (Tt)t≥0+ is also a convolution
semigroup of operators on L∞(GΩ).

Example of application: start from G = Ĝ , with G containing an abelian
subgroup H admitting a non-trivial 2-cocycle and use a conditionally
positive-definite function on G which vanishes on H.

Specifically: we can build interesting convolution semigroups on quantized
Heisenberg groups or on quantized SL2(C).
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Perspectives

Cipriani and Sauvageot showed that in the tracial case all quantum Dirichlet
forms (subject to technical conditions) arise canonically from certain
derivations; this takes a simpler form in the case of convolution semigroups
on compact quantum groups, and is related to Lévy-Khintchine
decomposition. Is there such a result in the state/weight case?

classical results of Hunt for Lie groups and then Heyer for general lc groups
show that for each convolution semigroup say on C0(G ) the domain of its
generator contains a canonical subalgebra. Can we have a result of this form
for locally compact quantum groups?
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