Interpolation of Markov maps on quantum Orlicz spaces

LE Labuschagne ${ }^{1}$ (and W A Majewski ${ }^{2}$)

1:School of Statistical, Computer and Mathematical Sciences
North-West University (Potchefstroom Campus)
2: University of Gdansk and NWU-Potchefstroom.
OAQD - 12-14 July 2017

Outline

(1) Classical Orlicz spaces
(2) Mildly noncommutative function spaces
(3) Applications
(4) Wildly noncommutative spaces
(5) Quantum Orlicz dynamics
(6) Bibliography

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

- $\psi(0)=0$ and $\lim _{u \rightarrow \infty} \psi(u)=\infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$, - left continuous at $b_{\psi}=\sup \{u>0: \psi(u)<\infty\}$.

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

- $\psi(0)=0$ and $\lim _{u \rightarrow \infty} \psi(u)=\infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi}=\sup \{u>0$:

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

- $\psi(0)=0$ and $\lim _{u \rightarrow \infty} \psi(u)=\infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi}=\sup \{u>0: \psi(u)<\infty\}$.

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

- $\psi(0)=0$ and $\lim _{u \rightarrow \infty} \psi(u)=\infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi}=\sup \{u>0: \psi(u)<\infty\}$.

Orlicz functions

Orlicz function: A convex function $\psi:[0, \infty) \rightarrow[0, \infty]$ satisfying

- $\psi(0)=0$ and $\lim _{u \rightarrow \infty} \psi(u)=\infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi}=\sup \{u>0: \psi(u)<\infty\}$.

Complementary Orlicz function: $\psi^{*}(u)=\sup _{v>0}(u v-\psi(v))$.

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$ Notational convention: L^{ψ} (Luxemburg norm); L_{k} (Orlicz norm). Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L^{2}$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.
\square Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$ Notational convention: L ψ (Luxemburg norm); L_{ψ} (Orlicz norm) Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.
\square Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$ Notational convention: L ψ (Luxemburg norm); L_{ψ} (Orlicz norm) Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.

Luxemburg-Nakano norm: $\|f\|_{\psi}=\inf \left\{\lambda>0:\|\psi(|f| / \lambda)\|_{1} \leq 1\right\}$. Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$ Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm), Köthe duality: A measurable function f belongs to $L_{\nu^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.

Luxemburg-Nakano norm: $\|f\|_{\psi}=\inf \left\{\lambda>0:\|\psi(|f| / \lambda)\|_{1} \leq 1\right\}$.
Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$.
Notational convention: L ψ (Luxemburg norm); L_{ψ} (Orlicz norm).
Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $a \in L^{\psi}$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.

Luxemburg-Nakano norm: $\|f\|_{\psi}=\inf \left\{\lambda>0:\|\psi(|f| / \lambda)\|_{1} \leq 1\right\}$.
Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$.
Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm).
Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L^{\psi}$

Defining Orlicz spaces

L^{0} the space of all measurable functions on σ-finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

$f \in L^{0}$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda=\lambda(f)>0$.

Luxemburg-Nakano norm: $\|f\|_{\psi}=\inf \left\{\lambda>0:\|\psi(|f| / \lambda)\|_{1} \leq 1\right\}$.
Orlicz norm: $\|f\|_{\psi}^{O}=\sup \left\{\left|\int_{\Omega} f g d m\right|: g \in L^{\psi^{*}},\|g\|_{\psi^{*}} \leq 1\right\}$.
Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm).
Köthe duality: A measurable function f belongs to $L_{\psi^{*}}(X, \Sigma, \nu)$ if and only if $f g \in L^{1}$ for every $g \in L^{\psi}$.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), T r\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.
- Similarly $L^{\Psi}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is $M_{n}(\mathbb{C})$ equipped with the norm

$$
\|a\|_{\psi}=\inf \{\lambda>0: \operatorname{Tr}(\psi(|a| / \lambda)) \leq 1\} .
$$

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.
- Similarly $L^{\Psi}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is $M_{n}(\mathbb{C})$ equipped with the norm

$$
\|a\|_{\psi}=\inf \{\lambda>0: \operatorname{Tr}(\psi(|a| / \lambda)) \leq 1\} .
$$

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.
- Similarly $L^{\Psi}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is $M_{n}(\mathbb{C})$ equipped with the norm $\|a\|_{\psi}=\inf \{\lambda>0: \operatorname{Tr}(\psi(|a| / \lambda)) \leq 1\}$.

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

New norms on $M_{n}(\mathbb{C})$

Example: Replace L^{∞} by $M_{n}(\mathbb{C})$, and $\int \cdot d \nu$ by Tr , and see what happens:

- $L^{p}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is just $M_{n}(\mathbb{C})$ equipped with the norm $\operatorname{Tr}\left(|a|^{p}\right)^{1 / p}$.
- Similarly $L^{\Psi}\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$ is $M_{n}(\mathbb{C})$ equipped with the norm

$$
\|a\|_{\Psi}=\inf \{\lambda>0: \operatorname{Tr}(\psi(|a| / \lambda)) \leq 1\}
$$

J von Neumann, Some matrix inequalities and metrization of matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $\left(M_{n}(\mathbb{C}), \operatorname{Tr}\right)$, the theory still works.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
$f \in \widetilde{M}$ belongs to $L^{P}(M, \tau) \Leftrightarrow \tau\left(|f|^{p}\right)<\infty$ with $\|f\|_{p}=\tau\left(|f|^{p}\right)^{1 / p}$
$f \in \widetilde{M}$ belongs to $L^{\psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$. That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:

\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$. That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$. That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
- Normal: $\sup \tau\left(a_{\alpha}\right)=\tau\left(\sup a_{\alpha}\right)$ for every increasing net.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
- Normal: $\sup \tau\left(a_{\alpha}\right)=\tau\left(\sup a_{\alpha}\right)$ for every increasing net.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
- Normal: $\sup \tau\left(a_{\alpha}\right)=\tau\left(\sup a_{\alpha}\right)$ for every increasing net.
- Semifinite: $\operatorname{span}\left\{a \in M^{+}: \tau(a)<\infty\right\}$ is weak* dense in M.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
- Normal: $\sup \tau\left(a_{\alpha}\right)=\tau\left(\sup a_{\alpha}\right)$ for every increasing net.
- Semifinite: $\operatorname{span}\left\{a \in M^{+}: \tau(a)<\infty\right\}$ is weak* dense in M.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
That is $\tau: M^{+} \rightarrow[0, \infty]$ is an affine functional satisfying:
- Faithful: $\tau(a)=0 \Leftrightarrow a=0$ for every $a \in M^{+}$.
- Normal: $\sup \tau\left(a_{\alpha}\right)=\tau\left(\sup a_{\alpha}\right)$ for every increasing net.
- Semifinite: $\operatorname{span}\left\{a \in M^{+}: \tau(a)<\infty\right\}$ is weak* dense in M.
- Tracial property: $\tau\left(a a^{*}\right)=\tau\left(a^{*} a\right)$ for all $a \in M$.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
$f \in \widetilde{M}$ belongs to $L^{P}(M, \tau) \Leftrightarrow \tau\left(|f|^{p}\right)<\infty$ with $\|f\|_{p}=\tau\left(|f|^{p}\right)^{1 / p}$
$f \in \widetilde{M}$ belongs to $L^{\psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
$f \in \widetilde{M}$ belongs to $L^{P}(M, \tau) \Leftrightarrow \tau\left(|f|^{p}\right)<\infty$ with $\|f\|_{p}=\tau\left(|f|^{p}\right)^{1 / p}$
$f \in \widetilde{M}$ belongs to $L^{\psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.

\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
 \square

\widetilde{M} belongs to $L^{\psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
$f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau\left(|f|^{p}\right)<\infty$ with $\|f\|_{p}=\tau\left(|f|^{p}\right)^{1 / p}$.
$f \in \widetilde{M}$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that

Orlicz and L^{p}-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}}=\tau: M^{+} \rightarrow[0, \infty]$.
- \widetilde{M} the algebra of τ_{M}-measurable operators: operators affiliated to M, such that for every $\varepsilon>0$ there exists a projection $e \in M$ with $\tau(e) \leq \varepsilon$, and $a(\mathbb{1}-e) \in M$.
\widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.
$f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau\left(|f|^{p}\right)<\infty$ with $\|f\|_{p}=\tau\left(|f|^{p}\right)^{1 / p}$.
$f \in \widetilde{M}$ belongs to $L^{\psi}(M, \tau) \Leftrightarrow$ there exists $\beta>0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

Why bother?

Let f be a fixed element (state) in

$$
M_{\nu}=\left\{f \in L^{1}: f>0, \int f d \nu=1\right\}(\nu(X)=1)
$$

Why bother?

Let f be a fixed element (state) in

$$
M_{\nu}=\left\{f \in L^{1}: f>0, \int f d \nu=1\right\}(\nu(X)=1)
$$

Definition (Pistone-Sempi, 1995)

A measurable function u is said to be a regular observable (with respect to f) if the function $\widehat{u}(t)=\int e^{t u} f . d \nu$ exists in a neighbourhood of 0 , and $\int u f d \nu=0$.

Why bother?

Let f be a fixed element (state) in

$$
M_{\nu}=\left\{f \in L^{1}: f>0, \int f d \nu=1\right\}(\nu(X)=1)
$$

Definition (Pistone-Sempi, 1995)

A measurable function u is said to be a regular observable (with respect to f) if the function $\widehat{u}(t)=\int e^{t u} f . d \nu$ exists in a neighbourhood of 0 , and $\int u f d \nu=0$.

Why bother?

Let f be a fixed element (state) in

$$
M_{\nu}=\left\{f \in L^{1}: f>0, \int f d \nu=1\right\}(\nu(X)=1)
$$

Definition (Pistone-Sempi, 1995)

A measurable function u is said to be a regular observable (with respect to f) if the function $\widehat{u}(t)=\int e^{t u} f . d \nu$ exists in a neighbourhood of 0 , and $\int u f d \nu=0$.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of $L^{\text {cosh }-1}(X, \Sigma, f . d \nu)$ of zero expectation elements.

States with entropy 1

> Here $L \log (L+1)(M, \tau)$ is the Orlicz space corresponding to the function $\Psi(t)=t \log (t+1)$.

States with entropy 1

Inspired by the controversial work of Boltzmann on the dynamics of rarefied gases [1872], von Neumann expressed entropy as $\operatorname{Tr}(\rho \log (\rho))$ in the context of $B(H)$ (here ρ is a norm 1 element of $\mathscr{S}^{1}(H)^{+}$representing the state of the system).

Problem: For the specific case of $B(H)$ one gets a respectable theory for the action of this quantity on $\mathscr{S}^{1}(H)^{+}$. For more general tracial von Neumann algebras M, the quantity $\tau(\rho \log (\rho))\left(\rho \in L^{1}(M, \tau)^{+}\right)$can be extremely badly behaved with respect to the L^{1}-topology. So $B(H)$ is somewhat exceptional!!

States with entropy 1

Inspired by the controversial work of Boltzmann on the dynamics of rarefied gases [1872], von Neumann expressed entropy as $\operatorname{Tr}(\rho \log (\rho))$ in the context of $B(H)$ (here ρ is a norm 1 element of $\mathscr{S}^{1}(H)^{+}$representing the state of the system).

Problem: For the specific case of $B(H)$ one gets a respectable theory for the action of this quantity on $\mathscr{S}^{1}(H)^{+}$. For more general tracial von Neumann algebras M, the quantity $\tau(\rho \log (\rho))\left(\rho \in L^{1}(M, \tau)^{+}\right)$can be extremely badly behaved with respect to the L^{1}-topology. So $B(H)$ is somewhat exceptional!!

States with entropy 1

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and $f \in L^{1} \cap L \log (L+1)(M, \tau)$ with $f \geq 0$. Then $\tau(f \log (f+\epsilon))$ is well defined for any $\epsilon>0$. Moreover

$$
\tau(f \log f)
$$

is bounded above, and if in addition $f \in L^{1 / 2}$, it is also bounded from below.

Here $L \log (L+1)(M, \tau)$ is the Orlicz space corresponding to the function $\Psi(t)=t \log (t+1)$.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?

In the case of $M=B(H), \tau=T r$, we have that

$$
\begin{gathered}
L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)=\mathscr{S}^{1}(H) \\
L^{\cosh -1}(M, \tau) \cap L^{\infty}(M, \tau)=B(H)
\end{gathered}
$$

Elementary quantum mechanics remains intact!

What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?

In the case of $M=B(H), \tau=\operatorname{Tr}$, we have that

Elementary quantum mechanics remains intact!

What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?
In the case of $M=B(H), \tau=\mathrm{Tr}$, we have that

Elementary quantum mechanics remains intact!
What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?

In the case of $M=B(H), \tau=\mathrm{Tr}$, we have that

$$
L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)=\mathscr{S}^{1}(H)
$$

Elementary quantum mechanics remains intact!
What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?
In the case of $M=B(H), \tau=\mathrm{Tr}$, we have that

$$
\begin{gathered}
L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)=\mathscr{S}^{1}(H) \\
L^{\text {cosh }-1}(M, \tau) \cap L^{\infty}(M, \tau)=B(H)
\end{gathered}
$$

Elementary quantum mechanics remains intact!
What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?
In the case of $M=B(H), \tau=\mathrm{Tr}$, we have that

$$
\begin{gathered}
L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)=\mathscr{S}^{1}(H) \\
L^{\cosh -1}(M, \tau) \cap L^{\infty}(M, \tau)=B(H)
\end{gathered}
$$

Elementary quantum mechanics remains intact!
What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

States with entropy 2

So why does the space $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ not feature in the context of the pair $\left\langle\mathscr{S}^{1}(H), B(H)\right\rangle$?
In the case of $M=B(H), \tau=\mathrm{Tr}$, we have that

$$
\begin{gathered}
L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)=\mathscr{S}^{1}(H) \\
L^{\cosh -1}(M, \tau) \cap L^{\infty}(M, \tau)=B(H)
\end{gathered}
$$

Elementary quantum mechanics remains intact!
What is required is more care in extending the $B(H)$ picture to more general von Neumann algebras.

Implications

Achieved results: $L^{\cosh -1}(M, \tau)$ is a home for regular quantum observables, and $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ a home for states with good entropy.

Deeper truths: The space $L^{\cosh -1}(M, \tau)$ is actually an
isomorphic copy of the Banach space dual of $L \log (L+1)(M, \tau)$. So up to isomorphism, $\left\langle L \log (L+1)(M, T), L^{\cosh -1}(M, T)\right\rangle$ is a dual pair.

Implications

Achieved results: $L^{\cosh -1}(M, \tau)$ is a home for regular quantum observables, and $L \log (L+1)(M, \tau) \cap L^{1}(M, \tau)$ a home for states with good entropy.

Deeper truths: The space $L^{\cosh -1}(M, \tau)$ is actually an isomorphic copy of the Banach space dual of $L \log (L+1)(M, \tau)$. So up to isomorphism, $\left\langle L \log (L+1)(M, \tau), L^{\cosh -1}(M, \tau)\right\rangle$ is a dual pair.

The strange ways of type III L^{p} spaces

The strange ways of type III L^{p} spaces

Commutative Quantum
$A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R}) \quad$ "enlarge" M by passing to$A=M \rtimes_{\nu} \mathbb{R}$
$\theta_{s}(f \otimes g)(x, t)=f(x) g(t-s)$ a dual action of \mathbb{R} on A in theform of a group of *-auto-morphisms $\left\{\theta_{s}\right\}(s \in \mathbb{R})$
a canonical trace τ_{A} on A

The strange ways of type III L^{p} spaces

Commutative Quantum

$$
A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R}) \quad \text { "enlarge" } M \text { by passing to }
$$

$$
A=M \rtimes_{\nu} \mathbb{R}
$$

$$
\theta_{s}(f \otimes g)(x, t)=f(x) g(t-s)
$$

a dual action of \mathbb{R} on A in the form of a group of *-automorphisms $\left\{\theta_{s}\right\}(s \in \mathbb{R})$
a canonical trace τ_{A} on A
characterised by $\tau_{A} \circ \theta_{S}=e^{-S_{\tau_{A}}}$.

The strange ways of type III L^{p} spaces

Commutative Quantum

$$
\begin{array}{ll}
A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R}) & \text { "enlarge" } M \text { by passing to } \\
& A=M \rtimes_{\nu} \mathbb{R}
\end{array}
$$

$$
\theta_{s}(f \otimes g)(x, t)=f(x) g(t-s)
$$

a dual action of \mathbb{R} on A in the form of a group of *-automorphisms $\left\{\theta_{s}\right\}(s \in \mathbb{R})$

$$
\int \cdot d \nu \otimes \int_{\mathbb{R}} \cdot e^{-t} d t \quad \text { a canonical trace } \tau_{A} \text { on } A
$$

$$
\text { characterised by } \tau_{A} \circ \theta_{S}=e^{-s} \tau_{A}
$$

The strange ways of type III L^{p} spaces

Commutative Quantum

$$
\begin{array}{ll}
A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R}) & \text { "enlarge" } M \text { by passing to } \\
& A=M \rtimes_{\nu} \mathbb{R}
\end{array}
$$

$$
\theta_{s}(f \otimes g)(x, t)=f(x) g(t-s)
$$

a dual action of \mathbb{R} on A in the form of a group of *-automorphisms $\left\{\theta_{s}\right\}(s \in \mathbb{R})$

$$
\int \cdot d \nu \otimes \int_{\mathbb{R}} \cdot e^{-t} d t
$$

a canonical trace τ_{A} on A characterised by $\tau_{A} \circ \theta_{S}=e^{-s} \tau_{A}$.
(Haagerup, 1979): For any measurable function f on X (finite ν-almost everywhere) we have that

$$
f \otimes e^{(\cdot) / p} \in \widetilde{A} \quad \Leftrightarrow \quad f \in L^{p}(X, \Sigma, \nu)
$$

The strange ways of type III L^{p} spaces

Commutative Quantum

$$
\begin{array}{ll}
A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R}) & \text { "enlarge" } M \text { by passing to } \\
& A=M \rtimes_{\nu} \mathbb{R}
\end{array}
$$

$$
\theta_{s}(f \otimes g)(x, t)=f(x) g(t-s)
$$

a dual action of \mathbb{R} on A in the form of a group of *-automorphisms $\left\{\theta_{s}\right\}(s \in \mathbb{R})$

$$
\int \cdot d \nu \otimes \int_{\mathbb{R}} \cdot e^{-t} d t
$$

a canonical trace τ_{A} on A characterised by $\tau_{A} \circ \theta_{S}=e^{-s} \tau_{A}$.
(Haagerup, 1979): By analogy with the classical setting, we may define

$$
L^{p}(M)=\left\{a \in \widetilde{A}: \theta_{s}(a)=e^{-s / p} a \text { for all } s \in \mathbb{R}\right\}
$$

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.

> It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.

> It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.

It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \widehat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.

It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \widehat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t)=\eta(t-s)$,

> It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \widehat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t)=\eta(t-s)$,

> It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is the positive operator $h=\frac{\mathrm{d} \widehat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t)=\eta(t-s)$,
- and generate the von Neumann algebra $A=M \rtimes_{\nu} \mathbb{R} \subset B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$ from these two classes of maps.

It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is
the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t)=\eta(t-s)$,
- and generate the von Neumann algebra $A=M \rtimes_{\nu} \mathbb{R} \subset B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$ from these two classes of maps.

It turns out that for each s we have that $\lambda(s)=h^{i s}$ where h is
the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Constructing $A=M \rtimes_{\nu} \mathbb{R}$

- Replace \mathcal{H} with $L^{2}(\mathbb{R}, \mathcal{H})$.
- The map $a \rightarrow \pi(a)$ defines and embedding of M into $B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$, where $(\pi(a)(\eta))(t)=\sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^{2}(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t)=\eta(t-s)$,
- and generate the von Neumann algebra $A=M \rtimes_{\nu} \mathbb{R} \subset B\left(L^{2}(\mathbb{R}, \mathcal{H})\right)$ from these two classes of maps.

It turns out that for each s we have that $\lambda(s)=h^{\text {is }}$ where h is the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A.

Type III Orlicz spaces

Haagerup's construction of L^{p}-spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M=L^{\infty}(X, \Sigma, \nu)$, and let $A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orilicz function ψ, define $\varphi_{\psi}:[0, \infty) \rightarrow[0, \infty)$ by

$$
\varphi_{\psi}(t)=\frac{1}{\psi^{-1}(1 / t)}
$$

For any measurable function f on X, we then have that

$$
f \otimes \varphi_{\psi}\left(e^{(\cdot)}\right) \in \widetilde{A} \Leftrightarrow f \in L^{\Psi}(X, \Sigma, \nu) .
$$

Type III Orlicz spaces

Haagerup's construction of L^{p}-spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M=L^{\infty}(X, \Sigma, \nu)$, and let $A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before. Given an Orlicz function Ψ, define $\varphi_{\psi}:[0, \infty) \rightarrow[0, \infty)$ by

For any measurable function f on X, we then have that

Type III Orlicz spaces

Haagerup's construction of L^{p}-spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M=L^{\infty}(X, \Sigma, \nu)$, and let $A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ, define $\varphi_{\psi}:[0, \infty) \rightarrow[0, \infty)$ by

For any measurable function f on X, we then have that

Type III Orlicz spaces

Haagerup's construction of L^{p}-spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M=L^{\infty}(X, \Sigma, \nu)$, and let $A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ, define $\varphi_{\psi}:[0, \infty) \rightarrow[0, \infty)$ by

$$
\varphi_{\psi}(t)=\frac{1}{\Psi^{-1}(1 / t)}
$$

For any measurable function f on X, we then have that

Type III Orlicz spaces

Haagerup's construction of L^{p}-spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M=L^{\infty}(X, \Sigma, \nu)$, and let $A=L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ, define $\varphi_{\Psi}:[0, \infty) \rightarrow[0, \infty)$ by

$$
\varphi_{\psi}(t)=\frac{1}{\Psi^{-1}(1 / t)}
$$

For any measurable function f on X, we then have that

$$
f \otimes \varphi_{\psi}\left(e^{(\cdot)}\right) \in \widetilde{A} \quad \Leftrightarrow \quad f \in L^{\Psi}(X, \Sigma, \nu)
$$

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

Then a τ_{A}-measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{*}\left(e^{-s} h\right)^{-1} \varphi^{*}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\hat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,

Then a τ_{A}-measurable operator $a \in \widetilde{A}$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{\prime \prime}\left(e^{-s} h\right)^{-1} \varphi^{\prime \prime}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\hat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,

Then a τ_{A}-measurable operator $a \in \widetilde{A}$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{\prime \prime}\left(e^{-s} h\right)^{-1} \varphi^{\prime \prime}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\hat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,
- let h be the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A,

> Then a τ_{A}-measurable operator $a \in \mathcal{A}$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{\prime \prime}\left(e^{-s} h\right)^{-1} \varphi^{\prime \prime}(h)$.

> The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\hat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,
- let h be the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A,

> Then a τ_{A}-measurable operator $a \in \mathcal{A}$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{\prime \prime}\left(e^{-s} h\right)^{-1} \varphi^{\prime \prime}(h)$.

> The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\widehat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,
- let h be the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A,
- and let further φ^{*} be the fundamental function of the Köthe dual of $L^{\Psi}(0, \infty)$.
Then a τ_{A}-measurable operator $a \in A$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{*}\left(e^{-s} h\right)^{-1} \varphi^{*}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013]

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\widehat{\nu}$ be the dual weight on the crossed product $A=M \rtimes_{\nu} \mathbb{R}$,
- let h be the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A,
- and let further φ^{*} be the fundamental function of the Köthe dual of $L^{\Psi}(0, \infty)$.
Then a τ_{A}-measurable operator $a \in A$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{*}\left(e^{-s} h\right)^{-1} \varphi^{*}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013]

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\widehat{\nu}$ be the dual weight on the crossed product

$$
A=M \rtimes_{\nu} \mathbb{R}
$$

- let h be the positive operator $h=\frac{\mathrm{d} \hat{\nu}}{\mathrm{d} \tau_{A}}$ affiliated to A,
- and let further φ^{*} be the fundamental function of the Köthe dual of $L^{\Psi}(0, \infty)$.
Then a τ_{A}-measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{*}\left(e^{-s} h\right)^{-1} \varphi^{*}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,

- let $\hat{\nu}$ be the dual weight on the crossed product

$$
A=M \rtimes_{\nu} \mathbb{R},
$$

- let h be the positive operator $h=\frac{d \hat{\nu}}{d \tau_{A}}$ affiliated to A,
- and let further φ^{*} be the fundamental function of the Köthe dual of $L^{\psi}(0, \infty)$.
Then a τ_{A}-measurable operator $a \in \widetilde{A}$ belongs to $L^{\psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_{s}(a)=e^{-s} d_{s}^{1 / 2} a d_{s}^{1 / 2}$ where d_{s} is the operator $d_{s}=\varphi^{*}\left(e^{-s} h\right)^{-1} \varphi^{*}(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Problem: The proof uses complex interpolation. To date complex interpolation does not work for quantum Orlicz spaces.

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is

Problem: The proof uses complex interpolation. To date

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Problem: The proof uses complex interpolation. To date

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \rightarrow M$ be a positive map for which there exists some $C_{1}>0$ such that $\nu(T(x)) \leq C_{1} \nu(x)$ for all $x \in M^{+}$. Then for each $1 \leq p<\infty, T$ canonically extends to a positive bounded $\operatorname{map} T_{p}: L^{p}(M) \rightarrow L^{p}(M)$ such that $\left\|T_{p}\right\| \leq C_{\infty}^{1-(1 / p)} . C_{1}^{1 / p}$ where $C_{\infty}=\|T(\mathbb{1})\|_{\infty}$.

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \rightarrow M$ be a positive map for which there exists some $C_{1}>0$ such that $\nu(T(x)) \leq C_{1} \nu(x)$ for all $x \in M^{+}$. Then for each $1 \leq p<\infty, T$ canonically extends to a positive bounded $\operatorname{map} T_{p}: L^{p}(M) \rightarrow L^{p}(M)$ such that $\left\|T_{p}\right\| \leq C_{\infty}^{1-(1 / p)} . C_{1}^{1 / p}$ where $C_{\infty}=\|T(\mathbb{1})\|_{\infty}$.

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \rightarrow M$ be a positive map for which there exists some $C_{1}>0$ such that $\nu(T(x)) \leq C_{1} \nu(x)$ for all $x \in M^{+}$. Then for each $1 \leq p<\infty, T$ canonically extends to a positive bounded $\operatorname{map} T_{p}: L^{p}(M) \rightarrow L^{p}(M)$ such that $\left\|T_{p}\right\| \leq C_{\infty}^{1-(1 / p)} . C_{1}^{1 / p}$ where $C_{\infty}=\|T(\mathbb{1})\|_{\infty}$.

Problem: The proof uses complex interpolation. To date

Emergent challenge

Challenge: Given a Markov map T with a canonical action on M and $L^{1}(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \rightarrow M$ be a positive map for which there exists some $C_{1}>0$ such that $\nu(T(x)) \leq C_{1} \nu(x)$ for all $x \in M^{+}$. Then for each $1 \leq p<\infty, T$ canonically extends to a positive bounded map $T_{p}: L^{p}(M) \rightarrow L^{p}(M)$ such that $\left\|T_{p}\right\| \leq C_{\infty}^{1-(1 / p)} . C_{1}^{1 / p}$ where $C_{\infty}=\|T(\mathbb{1})\|_{\infty}$.

Problem: The proof uses complex interpolation. To date complex interpolation does not work for quantum Orlicz spaces.

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, $T: M \rightarrow M$ extends to a map \widetilde{T} on $A=M \rtimes_{\nu} \mathbb{R}$,

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, $T: M \rightarrow M$ extends to a map \widetilde{T} on $A=M \rtimes_{\nu} \mathbb{R}$,

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, $T: M \rightarrow M$ extends to a map \widetilde{T} on $A=M \rtimes_{\nu} \mathbb{R}$,
- and from there to a map on $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, $T: M \rightarrow M$ extends to a map \widetilde{T} on $A=M \rtimes_{\nu} \mathbb{R}$,
- and from there to a map on $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, $T: M \rightarrow M$ extends to a map \tilde{T} on $A=M \rtimes_{\nu} \mathbb{R}$,
- and from there to a map on $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$, and try to extract the action from that.

HJX extension result

HJX extension result

Theorem

Let $T: M \rightarrow M$ be a completely bounded normal map such that $T \circ \sigma_{t}^{\nu}=\sigma_{t}^{\nu} \circ T, \quad t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s) \pi(x))=\lambda(s) \pi(T(x))(x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\|=\|\widetilde{T}\|$. Moreover:
(1) $T(a \pi(x) b)=a \pi(T(x)) b \quad$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$. (3) $\widetilde{T} \circ \sigma_{i}^{\widehat{\nu}}=\sigma_{i}^{\widehat{\nu}} \cap \widetilde{T}$ for all $t \in \mathbb{R}$ (̂) is the dual weight of ν)

HJX extension result

Theorem

Let $T: M \rightarrow M$ be a completely bounded normal map such that $T \circ \sigma_{t}^{\nu}=\sigma_{t}^{\nu} \circ T, \quad t \in \mathbb{R}$. Then the prescription
$\widetilde{T}(\lambda(s) \pi(x))=\lambda(s) \pi(T(x))(x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\|=\|\widetilde{T}\|$. Moreover:
(1) $\widetilde{T}(a \pi(x) b)=a \pi(T(x)) b \quad$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.

HJX extension result

Theorem

Let $T: M \rightarrow M$ be a completely bounded normal map such that $T \circ \sigma_{t}^{\nu}=\sigma_{t}^{\nu} \circ T, \quad t \in \mathbb{R}$. Then the prescription
$\widetilde{T}(\lambda(s) \pi(x))=\lambda(s) \pi(T(x))(x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\|=\|\widetilde{T}\|$. Moreover:
(1) $\widetilde{T}(a \pi(x) b)=a \pi(T(x)) b \quad$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
(2) $\widetilde{T} \circ \sigma_{t}^{\widehat{\nu}}=\sigma_{t}^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).

HJX extension result

Theorem

Let $T: M \rightarrow M$ be a completely bounded normal map such that $T \circ \sigma_{t}^{\nu}=\sigma_{t}^{\nu} \circ T, \quad t \in \mathbb{R}$. Then the prescription
$\widetilde{T}(\lambda(s) \pi(x))=\lambda(s) \pi(T(x))(x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\|=\|\widetilde{T}\|$. Moreover:
(1) $\widetilde{T}(a \pi(x) b)=a \pi(T(x)) b \quad$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
(2) $\widetilde{T} \circ \sigma_{t}^{\hat{\nu}}=\sigma_{t}^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
(3) $T \geq 0 \Rightarrow \widetilde{T} \geq 0$.

HJX extension result

Theorem

Let $T: M \rightarrow M$ be a completely bounded normal map such that $T \circ \sigma_{t}^{\nu}=\sigma_{t}^{\nu} \circ T, \quad t \in \mathbb{R}$. Then the prescription
$\widetilde{T}(\lambda(s) \pi(x))=\lambda(s) \pi(T(x))(x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\|=\|\widetilde{T}\|$. Moreover:
(1) $\widetilde{T}(a \pi(x) b)=a \pi(T(x)) b \quad$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
(2) $\widetilde{T} \circ \sigma_{t}^{\widehat{\nu}}=\sigma_{t}^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
(3) $T \geq 0 \Rightarrow \widetilde{T} \geq 0$.
(4) $\nu \circ T \leq \nu \Rightarrow \widehat{\nu} \circ \widetilde{T} \leq \widehat{\nu}$.

Real interpolation to the rescue

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the conclusion.

Real interpolation to the rescue

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$.
The map T then also canonically induces a map on the space $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the conclusion.

Real interpolation to the rescue

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$.
The map T then also canonically induces a map on the space $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the conclusion.

Real interpolation to the rescue

Corollary

Let T and \tilde{T} be as before. If each of (1)-(4) holds, then $\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map T then also canonically induces a map on the space $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the conclusion.

Real interpolation to the rescue

Corollary

Let T and \tilde{T} be as before. If each of (1)-(4) holds, then
$\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$.
The map T then also canonically induces a map on the space
$\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.
Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim
apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded
map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the
conclusion.

Real interpolation to the rescue

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then
$\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$.
The map T then also canonically induces a map on the space
$\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.
Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the
conclusion.

Real interpolation to the rescue

Corollary

Let T and \tilde{T} be as before. If each of (1)-(4) holds, then
$\tau_{A} \circ \widetilde{T} \leq \tau_{A}$ where τ_{A} is the canonical trace on $A=M \rtimes_{\sigma^{\nu}} \mathbb{R}$.
The map T then also canonically induces a map on the space
$\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.
Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \widetilde{T} induces a bounded map on $L^{1}\left(A, \tau_{A}\right)$, and then apply real interpolation to get the conclusion.

Markov dynamics

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$.

the upper fundamental index of $L^{\Psi}(M)$.

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M_{\psi}(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Markov dynamics

Definition

Let φ_{ψ}, be the fundamental function of the space $L^{\psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M_{\psi}(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\bar{\beta}_{L^{\psi}}<1$, then $L^{\psi}(M) \subset\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$ (isomorphically).
Moreover $L^{\psi}(M)$ is an invariant subspace of the extension \widetilde{T} of

space of regular observables.)

Markov dynamics

Definition

Let φ_{ψ}, be the fundamental function of the space $L^{\psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M_{\psi}(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\bar{\beta}_{L^{\psi}}<1$, then $L^{\psi}(M) \subset\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$ (isomorphically).
Moreover $L^{\psi}(M)$ is an invariant subspace of the extension \widetilde{T} of

space of regular observables.)

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M_{\psi}(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\bar{\beta}_{L^{\psi}}<1$, then $L^{\psi}(M) \subset\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$ (isomorphically).
Moreover $L^{\psi}(M)$ is an invariant subspace of the extension \tilde{T} of T to $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$.

Markov dynamics

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0, \infty)$, and let $M_{\psi}(t)=\sup _{s>0} \frac{\varphi_{\psi}(s t)}{\varphi_{\psi}(s)}$. We call the quantity

$$
\bar{\beta}_{L^{\psi}}=\inf _{1<t} \frac{\log M_{\psi}(s)}{\log s}
$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\bar{\beta}_{L^{\psi}}<1$, then $L^{\psi}(M) \subset\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$ (isomorphically). Moreover $L^{\psi}(M)$ is an invariant subspace of the extension \widetilde{T} of T to $\left(L^{\infty}+L^{1}\right)\left(A, \tau_{A}\right)$. This class includes $L^{\text {cosh }}{ }^{-1}(M)!!$ (The space of regular observables.)

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces $\left\langle L \log (L+1)(M), L^{\cosh -1}(M)\right\rangle$ are respectively homes for good states and good observables of this system.

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces $\left\langle L \log (L+1)(M), L^{\cosh -1}(M)\right\rangle$ are respectively homes for good states and good observables of this system.

The emergent picture

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces $\left\langle L \log (L+1)(M), L^{\text {cosh }-1}(M)\right\rangle$ are respectively homes for good states and good observables of this system.
- There is a Dirichlet form \mathscr{E} (representing an energy potential) describing Markov dynamics on the space $L^{\cosh -1}(M)$ of regular observables.

Selected References

1. LE Labuschagne and WA Majewski, Maps on Noncommutative Orlicz Spaces, Illinois J Math 55 (3) (2011), 1053-1081.
2. LE Labuschagne, A crossed product approach to Orlicz spaces, Proc LMS 107 (3) (2013), 965-1003.
3. WA Majewski and LE Labuschagne, On applications of Orlicz Spaces to Statistical Physics, Annales Henri Poincaré 15 (2014), 1197-1221.
4. LE Labuschagne and WA Majewski, Quantum dynamics on Orlicz spaces, arXiv:1605.01210 [math-ph].
5. LE Labuschagne and WA Majewski, Integral and differential structures for quantum field theory, arXiv:1702.00665[math-ph].
