Interpolation of Markov maps on quantum Orlicz spaces

L E Labuschagne¹ (and W A Majewski²)

 School of Statistical, Computer and Mathematical Sciences North-West University (Potchefstroom Campus)
University of Gdansk and NWU-Potchefstroom.

OAQD - 12-14 July 2017

Outline

- 2 Mildly noncommutative function spaces
- 3 Applications
- Wildly noncommutative spaces
- 5 Quantum Orlicz dynamics
- 6 Bibliography

Orlicz function: A convex function $\psi : [0, \infty) \to [0, \infty]$ satisfying • $\psi(0) = 0$ and $\lim_{u \to \infty} \psi(u) = \infty$,

- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}$.

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0} (uv - \psi(v))$.

Orlicz function: A convex function $\psi : [0,\infty) \to [0,\infty]$ satisfying

• $\psi(\mathbf{0}) = \mathbf{0}$ and $\lim_{u \to \infty} \psi(u) = \infty$,

- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}$.

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0} (uv - \psi(v))$.

Orlicz function: A convex function $\psi : [0, \infty) \to [0, \infty]$ satisfying • $\psi(0) = 0$ and $\lim_{u \to \infty} \psi(u) = \infty$,

- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}.$

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0}(uv - \psi(v))$.

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Orlicz function: A convex function $\psi : [0, \infty) \rightarrow [0, \infty]$ satisfying

- $\psi(0) = 0$ and $\lim_{u \to \infty} \psi(u) = \infty$,
- neither identically zero nor infinite valued on all of $(0, \infty)$,
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}$.

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0}(uv - \psi(v))$.

Orlicz function: A convex function $\psi : [0, \infty) \rightarrow [0, \infty]$ satisfying

- $\psi(0) = 0$ and $\lim_{u \to \infty} \psi(u) = \infty$,
- neither identically zero nor infinite valued on all of $(0,\infty)$,
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}.$

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0}(uv - \psi(v))$.

Orlicz function: A convex function $\psi : [0,\infty) \to [0,\infty]$ satisfying

•
$$\psi(0) = 0$$
 and $\lim_{u \to \infty} \psi(u) = \infty$,

- neither identically zero nor infinite valued on all of (0,∞),
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}.$

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0} (uv - \psi(v))$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Orlicz function: A convex function $\psi : [0,\infty) \to [0,\infty]$ satisfying

•
$$\psi(0) = 0$$
 and $\lim_{u \to \infty} \psi(u) = \infty$,

- neither identically zero nor infinite valued on all of (0,∞),
- left continuous at $b_{\psi} = \sup\{u > 0 : \psi(u) < \infty\}.$

Complementary Orlicz function: $\psi^*(u) = \sup_{v>0} (uv - \psi(v))$.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^O = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function *f* belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^O = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function f belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^O = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function f belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^O = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function f belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^{O} = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function *f* belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

・ロット (雪) (日) (日) (日)

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda|f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^{O} = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function *f* belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

 L^0 the space of all measurable functions on σ -finite (Ω, Σ, m).

Definition (Orlicz space corresponding to ψ)

 $f \in L^0$ belongs to $L^{\psi} \Leftrightarrow \psi(\lambda |f|)$ is integrable for some $\lambda = \lambda(f) > 0$.

Luxemburg-Nakano norm: $||f||_{\psi} = \inf\{\lambda > 0 : ||\psi(|f|/\lambda)||_1 \le 1\}$. Orlicz norm: $||f||_{\psi}^{O} = \sup\{|\int_{\Omega} fg \, dm| : g \in L^{\psi^*}, ||g||_{\psi^*} \le 1\}$. Notational convention: L^{ψ} (Luxemburg norm); L_{ψ} (Orlicz norm). Köthe duality: A measurable function *f* belongs to $L_{\psi^*}(X, \Sigma, \nu)$ if and only if $fg \in L^1$ for every $g \in L^{\psi}$.

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- L^p(M_n(C), Tr) is just M_n(C) equipped with the norm Tr(|a|^p)^{1/p}.
- Similarly L^Ψ(M_n(C), Tr) is M_n(C) equipped with the norm
 ||a||_Ψ = inf{λ > 0 : Tr(ψ(|a|/λ)) ≤ 1}.

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \operatorname{Tr})$, the theory still works.

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \leq 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \text{Tr})$, the theory still works.

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \leq 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \text{Tr})$, the theory still works.

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \le 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \operatorname{Tr})$, the theory still works.

・ロット 金田 マス 日マ トロマ

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \le 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* 1(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \operatorname{Tr})$, the theory still works.

・ロット 金田 マス 日マ トロマ

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \le 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* **1**(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \operatorname{Tr})$, the theory still works.

Example: Replace L^{∞} by $M_n(\mathbb{C})$, and $\int \cdot d\nu$ by Tr, and see what happens:

- $L^{p}(M_{n}(\mathbb{C}), \operatorname{Tr})$ is just $M_{n}(\mathbb{C})$ equipped with the norm $Tr(|a|^{p})^{1/p}$.
- Similarly $L^{\Psi}(M_n(\mathbb{C}), \operatorname{Tr})$ is $M_n(\mathbb{C})$ equipped with the norm $||a||_{\Psi} = \inf\{\lambda > 0 : \operatorname{Tr}(\psi(|a|/\lambda)) \le 1\}.$

J von Neumann, Some matrix inequalities and metrization of matrix space, *Tomsk Univ Rev* **1**(1937), 286-300

Upping the ante: If we play essentially the same game but using a semifinite von Neumann algebra M and an associated fns trace τ instead of $(M_n(\mathbb{C}), \text{Tr})$, the theory still works.

M a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : *M*⁺ → [0,∞].

• *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 - e) \in M$.

 \widetilde{M} plays the role of the completion of L^{∞} under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

 $f \in \widetilde{M}$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta > 0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

M a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:

• Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.

• Normal: $\sup \tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.

• Semifinite: span{ $a \in M^+ : \tau(a) < \infty$ } is weak* dense in M.

• Tracial property: $\tau(aa^*) = \tau(a^*a)$ for all $a \in M$.

• *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 - e) \in M$.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: $\sup \tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Semifinite: span $\{a \in M^+ : \tau(a) < \infty\}$ is weak* dense in M.
 - Tracial property: $\tau(aa^*) = \tau(a^*a)$ for all $a \in M$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 e) \in M$.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau(|f|^{p}) < \infty$ with $||f||_{p} = \tau(|f|^{p})^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: $\sup \tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Semifinite: span $\{a \in M^+ : \tau(a) < \infty\}$ is weak* dense in M.
 - Tracial property: $\tau(aa^*) = \tau(a^*a)$ for all $a \in M$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 e) \in M$.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau(|f|^{p}) < \infty$ with $||f||_{p} = \tau(|f|^{p})^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: sup $\tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Tracial property: $\tau(a^*) = \tau(a^*a)$ for all $a \in M$.
- *M* the algebra of *τ_M*-measurable operators: operators affiliated to *M*, such that for every *ε* > 0 there exists a projection *e* ∈ *M* with *τ*(*e*) ≤ *ε*, and *a*(1 − *e*) ∈ *M*.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau(|f|^{p}) < \infty$ with $||f||_{p} = \tau(|f|^{p})^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: sup $\tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Tracial property: $\tau(a^*) = \tau(a^*a)$ for all $a \in M$.
- *M* the algebra of *τ_M*-measurable operators: operators affiliated to *M*, such that for every *ε* > 0 there exists a projection *e* ∈ *M* with *τ*(*e*) ≤ *ε*, and *a*(1 − *e*) ∈ *M*.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^{p}(M, \tau) \Leftrightarrow \tau(|f|^{p}) < \infty$ with $||f||_{p} = \tau(|f|^{p})^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: $\sup \tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Semifinite: span{ $a \in M^+ : \tau(a) < \infty$ } is weak* dense in *M*.

• \overline{M} the algebra of τ_M -measurable operators: operators affiliated to M, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 - e) \in M$.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: $\sup \tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Semifinite: span{ $a \in M^+ : \tau(a) < \infty$ } is weak* dense in *M*.

• \overline{M} the algebra of τ_M -measurable operators: operators affiliated to M, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) \le \varepsilon$, and $a(1 - e) \in M$.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : M⁺ → [0,∞]. That is τ : M⁺ → [0,∞] is an affine functional satisfying:
 - Faithful: $\tau(a) = 0 \Leftrightarrow a = 0$ for every $a \in M^+$.
 - Normal: sup $\tau(a_{\alpha}) = \tau(\sup a_{\alpha})$ for every increasing net.
 - Semifinite: span{ $a \in M^+ : \tau(a) < \infty$ } is weak* dense in *M*.
 - Tracial property: $\tau(aa^*) = \tau(a^*a)$ for all $a \in M$.
- *M* the algebra of *τ_M*-measurable operators: operators affiliated to *M*, such that for every ε > 0 there exists a projection e ∈ M with *τ*(e) ≤ ε, and a(1 − e) ∈ M.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$

 $f \in \widetilde{M}$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta' > 0$ so that $(\mathbb{R}^{+})^{\mathbb{R}^{+}}$

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : *M*⁺ → [0, ∞].
- *M* the algebra of *τ_M*-measurable operators: operators affiliated to *M*, such that for every *ε* > 0 there exists a projection *e* ∈ *M* with *τ*(*e*) ≤ *ε*, and *a*(1 − *e*) ∈ *M*.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

 $f \in \widetilde{M}$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta > 0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

- *M* a von Neumann algebra, equipped with a faithful normal semifinite trace τ_M = τ : *M*⁺ → [0, ∞].
- *M* the algebra of *τ_M*-measurable operators: operators affiliated to *M*, such that for every *ε* > 0 there exists a projection *e* ∈ *M* with *τ*(*e*) ≤ *ε*, and *a*(1 − *e*) ∈ *M*.

 \widetilde{M} plays the role of the completion of L^∞ under the topology of convergence in measure.

 $f \in \widetilde{M}$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

 $f \in \widetilde{M}$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta > 0$ so that $\Psi(\beta|f|) \in L^{1}(M, \tau)$.

Orlicz and L^p-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_{\mathcal{M}} = \tau : M^+ \to [0, \infty]$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) < \varepsilon$, and $a(1 - e) \in M$.

Orlicz and L^p-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_M = \tau : M^+ \to [0, \infty]$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) < \varepsilon$, and $a(1 - e) \in M$.

M plays the role of the completion of L^{∞} under the topology of convergence in measure.

Orlicz and L^p-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_M = \tau : M^+ \to [0, \infty]$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) < \varepsilon$, and $a(1 - e) \in M$.

M plays the role of the completion of L^{∞} under the topology of convergence in measure.

 $f \in M$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

Orlicz and L^p-spaces for semifinite algebras

- M a von Neumann algebra, equipped with a faithful normal semifinite trace $\tau_M = \tau : M^+ \to [0, \infty]$.
- *M* the algebra of τ_M -measurable operators: operators affiliated to *M*, such that for every $\varepsilon > 0$ there exists a projection $e \in M$ with $\tau(e) < \varepsilon$, and $a(1 - e) \in M$.

M plays the role of the completion of L^{∞} under the topology of convergence in measure.

 $f \in M$ belongs to $L^p(M, \tau) \Leftrightarrow \tau(|f|^p) < \infty$ with $||f||_p = \tau(|f|^p)^{1/p}$.

 $f \in M$ belongs to $L^{\Psi}(M, \tau) \Leftrightarrow$ there exists $\beta > 0$ so that $\Psi(\beta|f|) \in L^1(M,\tau).$

Let *f* be a fixed element (state) in $M_{\nu} = \{f \in L^1 : f > 0, \int f \, d\nu = 1\} \ (\nu(X) = 1).$

Definition (Pistone-Sempi, 1995)

A measurable function u is said to be a regular observable (with respect to f) if the function $\hat{u}(t) = \int e^{tu} f dv$ exists in a neighbourhood of 0, and $\int u f dv = 0$.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of $L^{\cosh -1}(X, \Sigma, f. d\nu)$ of zero expectation elements.

Let *f* be a fixed element (state) in $M_{\nu} = \{f \in L^1 : f > 0, \int f \, d\nu = 1\} \ (\nu(X) = 1).$

Definition (Pistone-Sempi, 1995)

A measurable function *u* is said to be a regular observable (with respect to *f*) if the function $\hat{u}(t) = \int e^{tu} f dv$ exists in a neighbourhood of 0, and $\int u f dv = 0$.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of $L^{\cosh -1}(X, \Sigma, f. d\nu)$ of zero expectation elements.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Let *f* be a fixed element (state) in $M_{\nu} = \{f \in L^1 : f > 0, \int f \, d\nu = 1\} \ (\nu(X) = 1).$

Definition (Pistone-Sempi, 1995)

A measurable function *u* is said to be a regular observable (with respect to *f*) if the function $\hat{u}(t) = \int e^{tu} f dv$ exists in a neighbourhood of 0, and $\int u f dv = 0$.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of $L^{\cosh -1}(X, \Sigma, f. d\nu)$ of zero expectation elements.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Let *f* be a fixed element (state) in $M_{\nu} = \{f \in L^1 : f > 0, \int f \, d\nu = 1\} \ (\nu(X) = 1).$

Definition (Pistone-Sempi, 1995)

A measurable function *u* is said to be a regular observable (with respect to *f*) if the function $\hat{u}(t) = \int e^{tu} f dv$ exists in a neighbourhood of 0, and $\int u f dv = 0$.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of $L^{\cosh -1}(X, \Sigma, f.d\nu)$ of zero expectation elements.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and $f \in L^1 \cap L\log(L+1)(M, \tau)$ with $f \ge 0$. Then $\tau(f \log(f + \epsilon))$ is well defined for any $\epsilon > 0$. Moreover

$\tau(f \log f)$

is bounded above, and if in addition $f \in L^{1/2}$, it is also bounded from below.

Here $L \log(L+1)(M, \tau)$ is the Orlicz space corresponding to the function $\Psi(t) = t \log(t+1)$.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

Inspired by the controversial work of Boltzmann on the dynamics of rarefied gases [1872], von Neumann expressed entropy as $Tr(\rho \log(\rho))$ in the context of B(H) (here ρ is a norm 1 element of $\mathscr{S}^1(H)^+$ representing the state of the system).

Problem: For the specific case of B(H) one gets a respectable theory for the action of this quantity on $\mathscr{S}^1(H)^+$. For more general tracial von Neumann algebras M, the quantity $\tau(\rho \log(\rho))$ ($\rho \in L^1(M, \tau)^+$) can be extremely badly behaved with respect to the L^1 -topology. So B(H) is somewhat exceptional!!

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and $f \in L^1 \cap L\log(L+1)(M, \tau)$ with $f \ge 0$. Then $\tau(f\log(f+\epsilon))$ is well defined for any $\epsilon > 0$. Moreover

Inspired by the controversial work of Boltzmann on the dynamics of rarefied gases [1872], von Neumann expressed entropy as $Tr(\rho \log(\rho))$ in the context of B(H) (here ρ is a norm 1 element of $\mathscr{S}^1(H)^+$ representing the state of the system).

Problem: For the specific case of B(H) one gets a respectable theory for the action of this quantity on $\mathscr{S}^1(H)^+$. For more general tracial von Neumann algebras M, the quantity $\tau(\rho \log(\rho))$ ($\rho \in L^1(M, \tau)^+$) can be extremely badly behaved with respect to the L^1 -topology. So B(H) is somewhat exceptional!!

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and $f \in L^1 \cap L\log(L + 1)(M, \tau)$ with $f \ge 0$. Then $\tau(f \log(f + \epsilon))$ is well defined for any $\epsilon > 0$. Moreover

Proposition (L, Majewski; 2014)

Let *M* be a semifinite algebra and $f \in L^1 \cap L\log(L+1)(M, \tau)$ with $f \ge 0$. Then $\tau(f\log(f + \epsilon))$ is well defined for any $\epsilon > 0$. Moreover

 $\tau(f \log f)$

is bounded above, and if in addition $f \in L^{1/2}$, it is also bounded from below.

Here $L\log(L+1)(M,\tau)$ is the Orlicz space corresponding to the function $\Psi(t) = t\log(t+1)$.

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh -1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh -1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh -1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh -1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh -1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

What is required is more care in extending the B(H) picture to more general von Neumann algebras.

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh-1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

So why does the space $L\log(L+1)(M,\tau) \cap L^1(M,\tau)$ not feature in the context of the pair $\langle \mathscr{S}^1(H), B(H) \rangle$?

In the case of M = B(H), $\tau = Tr$, we have that

$$L\log(L+1)(M,\tau) \cap L^{1}(M,\tau) = \mathscr{S}^{1}(H)$$
$$L^{\cosh-1}(M,\tau) \cap L^{\infty}(M,\tau) = B(H)$$

Elementary quantum mechanics remains intact!

What is required is more care in extending the B(H) picture to more general von Neumann algebras.

Implications

Achieved results: $L^{\cosh -1}(M, \tau)$ is a home for regular quantum observables, and $L\log(L+1)(M, \tau) \cap L^{1}(M, \tau)$ a home for states with good entropy.

Deeper truths: The space $L^{\cosh -1}(M, \tau)$ is actually an isomorphic copy of the Banach space dual of $L\log(L+1)(M, \tau)$. So up to isomorphism, $(L\log(L+1)(M, \tau), L^{\cosh -1}(M, \tau))$ is a dual pair.

Implications

Achieved results: $L^{\cosh -1}(M, \tau)$ is a home for regular quantum observables, and $L\log(L+1)(M, \tau) \cap L^{1}(M, \tau)$ a home for states with good entropy.

Deeper truths: The space $L^{\cosh -1}(M, \tau)$ is actually an isomorphic copy of the Banach space dual of $L\log(L+1)(M, \tau)$. So up to isomorphism, $(L\log(L+1)(M, \tau), L^{\cosh -1}(M, \tau))$ is a dual pair.

Commutative	Quantum
$A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of $\mathbb R$ on A in the form of a group of *-auto- morphisms $\{\theta_s\}$ ($s \in \mathbb R$)
$\int \cdot {old u} \otimes \int_{\mathbb{R}} \cdot {old e}^{-t} {old t}$	a canonical trace τ_A on A characterised by $\tau_A \circ \theta_s = e^{-s} \tau_A$.

N

Commutative	Quantum
$A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of $\mathbb R$ on A in the form of a group of *-auto-morphisms $\{\theta_s\}$ ($s \in \mathbb R$)
$\int \cdot d u \otimes \int_{\mathbb{R}} \cdot e^{-t} dt$	a canonical trace τ_A on A characterised by $\tau_A \circ \theta_s = e^{-s} \tau_A$.

Commutative	Quantum
$A = L^\infty(X, \Sigma, \nu) \otimes L^\infty(\mathbb{R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of \mathbb{R} on A in the form of a group of *-auto- morphisms $\{\theta_s\}$ ($s \in \mathbb{R}$)
$\int \cdot d u \otimes \int_{\mathbb{R}} \cdot e^{-t} dt$	a canonical trace $ au_A$ on A characterised by $ au_A \circ heta_s = e^{-s} au_A$

Commutative	Quantum
${\mathcal A}=L^\infty(X,\Sigma, u)\otimes L^\infty({\mathbb R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of \mathbb{R} on A in the form of a group of *-auto- morphisms $\{\theta_s\}$ ($s \in \mathbb{R}$)
$\int \cdot oldsymbol{d} u \otimes \int_{\mathbb{R}} \cdot oldsymbol{e}^{-t} oldsymbol{d} t$	a canonical trace τ_A on A characterised by $\tau_A \circ \theta_s = e^{-s} \tau_A$.

<ロ> <四> <四> <三> <三> <三> <三> <三

The strange ways of type III L^p spaces

Commutative	Quantum
$A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of \mathbb{R} on A in the form of a group of *-auto- morphisms $\{\theta_s\}$ ($s \in \mathbb{R}$)
$\int \cdot {old t} u \otimes \int_{\mathbb{R}} \cdot {old e}^{-t} {old t}$	a canonical trace τ_A on A characterised by $\tau_A \circ \theta_s = e^{-s} \tau_A$.

(Haagerup, 1979): For any measurable function f on X (finite ν -almost everywhere) we have that

$$f \otimes e^{(\cdot)/p} \in \widetilde{A} \quad \Leftrightarrow \quad f \in L^p(X, \Sigma, \nu).$$

The strange ways of type III L^p spaces

Commutative	Quantum
$A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$	"enlarge" <i>M</i> by passing to $A = M \rtimes_{\nu} \mathbb{R}$
$ heta_s(f\otimes g)(x,t)=f(x)g(t-s)$	a dual action of \mathbb{R} on A in the form of a group of *-auto- morphisms $\{\theta_s\}$ ($s \in \mathbb{R}$)
$\int \cdot {old t} u \otimes \int_{\mathbb{R}} \cdot {old e}^{-t} {old t}$	a canonical trace τ_A on A characterised by $\tau_A \circ \theta_s = e^{-s} \tau_A$.

(Haagerup, 1979): By analogy with the classical setting, we may define

$$L^{p}(M) = \{a \in \widetilde{A} : \theta_{s}(a) = e^{-s/p}a \text{ for all } s \in \mathbb{R}\}.$$

・ロト ・個ト ・ヨト ・ヨト ・ヨー

- Replace \mathcal{H} with $L^2(\mathbb{R},\mathcal{H})$.
- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t-s)$,
- and generate the von Neumann algebra
 A = M ×_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R},\mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,
- and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R},\mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,
- and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t-s)$,

 and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t-s)$,

 and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

- Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.
- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,

 and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.
- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,

 and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,
- and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,
- and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

• Replace \mathcal{H} with $L^2(\mathbb{R}, \mathcal{H})$.

- The map $a \to \pi(a)$ defines and embedding of M into $B(L^2(\mathbb{R}, \mathcal{H}))$, where $(\pi(a)(\eta))(t) = \sigma_{-t}^{\nu}(a)(\eta(t))$ for all $a \in M$ and all $\eta \in L^2(\mathbb{R}, \mathcal{H})$.
- Throw in some shift operators $(\lambda(s)(\eta))(t) = \eta(t s)$,
- and generate the von Neumann algebra
 A = M ⋊_ν ℝ ⊂ B(L²(ℝ, ℋ)) from these two classes of
 maps.

It turns out that for each *s* we have that $\lambda(s) = h^{is}$ where *h* is the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*.

Type III Orlicz spaces

Haagerup's construction of L^{p} -spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M = L^{\infty}(X, \Sigma, \nu)$, and let $A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ , define $\varphi_{\Psi} : [0,\infty) \to [0,\infty)$ by

$$\varphi_{\Psi}(t) = \frac{1}{\Psi^{-1}(1/t)}.$$

For any measurable function f on X, we then have that

$$f\otimes \varphi_{\Psi}(\boldsymbol{e}^{(\cdot)})\in \widetilde{A} \quad \Leftrightarrow \quad f\in L^{\Psi}(X,\Sigma,\nu).$$

・ロット (口) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)))
Haagerup's construction of L^{p} -spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M = L^{\infty}(X, \Sigma, \nu)$, and let $A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ , define $\varphi_{\Psi} : [0,\infty) \to [0,\infty)$ by

$$\varphi_{\Psi}(t)=\frac{1}{\Psi^{-1}(1/t)}.$$

For any measurable function f on X, we then have that

$$f\otimes \varphi_{\Psi}(\boldsymbol{e}^{(\cdot)})\in \widetilde{A} \quad \Leftrightarrow \quad f\in L^{\Psi}(X,\Sigma,\nu).$$

◆□ ▶ ◆쪧 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣 □

Haagerup's construction of L^{p} -spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M = L^{\infty}(X, \Sigma, \nu)$, and let $A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ , define $\varphi_{\Psi} : [0, \infty) \rightarrow [0, \infty)$ by

$$\varphi_{\Psi}(t) = \frac{1}{\Psi^{-1}(1/t)}.$$

For any measurable function f on X, we then have that

$$f\otimes \varphi_{\Psi}(\boldsymbol{e}^{(\cdot)})\in \widetilde{A} \quad \Leftrightarrow \quad f\in L^{\Psi}(X,\Sigma,\nu).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Haagerup's construction of L^{p} -spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M = L^{\infty}(X, \Sigma, \nu)$, and let $A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ , define $\varphi_{\Psi} : [0,\infty) \to [0,\infty)$ by

$$\varphi_{\Psi}(t)=\frac{1}{\Psi^{-1}(1/t)}.$$

For any measurable function f on X, we then have that

$$f\otimes \varphi_{\Psi}(\boldsymbol{e}^{(\cdot)})\in \widetilde{A} \quad \Leftrightarrow \quad f\in L^{\Psi}(X,\Sigma,\nu).$$

Haagerup's construction of L^{p} -spaces for type III von Neumann algebras can be extended to also allow for the construction of Orlicz spaces. (L, 2014)

The classical roots of the construction: Let $M = L^{\infty}(X, \Sigma, \nu)$, and let $A = L^{\infty}(X, \Sigma, \nu) \otimes L^{\infty}(\mathbb{R})$ be as before.

Given an Orlicz function Ψ , define $\varphi_{\Psi}: [0,\infty) \to [0,\infty)$ by

$$\varphi_{\Psi}(t)=\frac{1}{\Psi^{-1}(1/t)}.$$

For any measurable function f on X, we then have that

$$f \otimes \varphi_{\Psi}(\boldsymbol{e}^{(\cdot)}) \in \widetilde{\boldsymbol{A}} \quad \Leftrightarrow \quad f \in L^{\Psi}(\boldsymbol{X}, \Sigma, \nu).$$

Given a von Neumann algebra M with fns weight ν ,

- let v̂ be the dual weight on the crossed product
 A = M ⋊_ν ℝ,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,
- and let further φ^{*} be the fundamental function of the Köthe dual of L^ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,

 and let further φ^{*} be the fundamental function of the Köthe dual of L^ψ(0,∞).

Then a τ_A -measurable operator $a \in A$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,

 and let further φ^{*} be the fundamental function of the Köthe dual of L^ψ(0,∞).

Then a τ_A -measurable operator $a \in A$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Given a von Neumann algebra M with fns weight ν ,

- let *h* be the positive operator $h = \frac{d\hat{\nu}}{dr_A}$ affiliated to *A*,

 and let further φ^{*} be the fundamental function of the Köthe dual of L^ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨー

Given a von Neumann algebra M with fns weight ν ,

- let *h* be the positive operator $h = \frac{d\hat{\nu}}{dr_A}$ affiliated to *A*,

 and let further φ^{*} be the fundamental function of the Köthe dual of L^ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

・ロト ・ ア・ ・ ヨト ・ ヨト ・ ヨー

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,
- and let further φ^{*} be the fundamental function of the Köthe dual of L^Ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

(ロ)、(型)、(E)、(E)、(E)、(O)

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,
- and let further φ^{*} be the fundamental function of the Köthe dual of L^Ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

(ロ)、(型)、(E)、(E)、(E)、(O)

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,
- and let further φ^{*} be the fundamental function of the Köthe dual of L^Ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

Given a von Neumann algebra M with fns weight ν ,

- let $\hat{\nu}$ be the dual weight on the crossed product $A = M \rtimes_{\nu} \mathbb{R}$,
- let *h* be the positive operator $h = \frac{d\hat{\nu}}{d\tau_A}$ affiliated to *A*,
- and let further φ^{*} be the fundamental function of the Köthe dual of L^Ψ(0,∞).

Then a τ_A -measurable operator $a \in \widetilde{A}$ belongs to $L^{\Psi}(M) \Leftrightarrow$ for every $s \in \mathbb{R}$ we have that $\theta_s(a) = e^{-s} d_s^{1/2} a d_s^{1/2}$ where d_s is the operator $d_s = \varphi^* (e^{-s}h)^{-1} \varphi^*(h)$.

The above definition was first proposed in [LM2017] where it was shown to be equivalent to the one originally given in [L2013].

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T : M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \le C_1\nu(x)$ for all $x \in M^+$. Then for each $1 \le p < \infty$, T canonically extends to a positive bounded map $T_p : L^p(M) \to L^p(M)$ such that $||T_p|| \le C_{\infty}^{1-(1/p)} . C_1^{1/p}$ where $C_{\infty} = ||T(1)||_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T : M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \le C_1\nu(x)$ for all $x \in M^+$. Then for each $1 \le p < \infty$, T canonically extends to a positive bounded map $T_p : L^p(M) \to L^p(M)$ such that $||T_p|| \le C_{\infty}^{1-(1/p)} . C_1^{1/p}$ where $C_{\infty} = ||T(1)||_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T : M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \le C_1\nu(x)$ for all $x \in M^+$. Then for each $1 \le p < \infty$, T canonically extends to a positive bounded map $T_p : L^p(M) \to L^p(M)$ such that $||T_p|| \le C_{\infty}^{1-(1/p)} \cdot C_1^{1/p}$ where $C_{\infty} = ||T(1)||_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \leq C_1 \nu(x)$ for all $x \in M^+$. Then for each $1 \leq p < \infty$, T canonically extends to a positive bounded map $T_p: L^p(M) \to L^p(M)$ such that $\|T_p\| \leq C_{\infty}^{1-(1/p)}.C_1^{1/p}$ where $C_{\infty} = \|T(1)\|_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \leq C_1 \nu(x)$ for all $x \in M^+$. Then for each $1 \leq p < \infty$, T canonically extends to a positive bounded map $T_p: L^p(M) \to L^p(M)$ such that $\|T_p\| \leq C_{\infty}^{1-(1/p)}.C_1^{1/p}$ where $C_{\infty} = \|T(1)\|_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \leq C_1 \nu(x)$ for all $x \in M^+$. Then for each $1 \leq p < \infty$, T canonically extends to a positive bounded map $T_p: L^p(M) \to L^p(M)$ such that $\|T_p\| \leq C_{\infty}^{1-(1/p)}.C_1^{1/p}$ where $C_{\infty} = \|T(1)\|_{\infty}$.

Challenge: Given a Markov map T with a canonical action on M and $L^1(M)$, can we show that it has a nice action on a large enough class of Orlicz spaces? First pause to see what is known.

Theorem (Yeadon 1977; HJX 2010)

Let $T: M \to M$ be a positive map for which there exists some $C_1 > 0$ such that $\nu(T(x)) \leq C_1 \nu(x)$ for all $x \in M^+$. Then for each $1 \leq p < \infty$, T canonically extends to a positive bounded map $T_p: L^p(M) \to L^p(M)$ such that $\|T_p\| \leq C_{\infty}^{1-(1/p)}.C_1^{1/p}$ where $C_{\infty} = \|T(1)\|_{\infty}$.

Problem: The proof uses complex interpolation. To date complex interpolation does not work for quantum Orlicz spaces.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, T : M → M extends to a map T on A = M ×_ν ℝ,
- and from there to a map on $(L^{\infty} + L^{1})(A, \tau_{A})$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, T : M → M extends to a map T on A = M ×_ν ℝ,
- and from there to a map on $(L^{\infty} + L^{1})(A, \tau_{A})$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, T : M → M extends to a map T on A = M ×_ν ℝ,
- and from there to a map on $(L^{\infty} + L^{1})(A, \tau_{A})$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, *T* : *M* → *M* extends to a map *T* on *A* = *M* ⋊_ν ℝ,
- and from there to a map on $(L^{\infty} + L^{1})(A, \tau_{A})$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, *T* : *M* → *M* extends to a map *T* on *A* = *M* ⋊_ν ℝ,
- and from there to a map on $(L^{\infty} + L^{1})(A, \tau_{A})$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, *T* : *M* → *M* extends to a map *T* on *A* = *M* ⋊_ν ℝ,
- and from there to a map on $(L^{\infty} + L^1)(A, \tau_A)$.
- Then see if any of the Orlicz spaces L^ψ(M) live inside (L[∞] + L¹)(A, τ_A), and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, *T* : *M* → *M* extends to a map *T* on *A* = *M* ⋊_ν ℝ,
- and from there to a map on $(L^{\infty} + L^1)(A, \tau_A)$.
- Then see if any of the Orlicz spaces L^ψ(M) live inside (L[∞] + L¹)(A, τ_A), and try to extract the action from that.

Challenge 2: Can we overcome the lack of access to complex interpolation, by passing to a smaller class of Markov maps, namely the CP Markov map? If so how?

Idea:

- Show that under acceptable assumptions, *T* : *M* → *M* extends to a map *T* on *A* = *M* ⋊_ν ℝ,
- and from there to a map on $(L^{\infty} + L^1)(A, \tau_A)$.
- Then see if any of the Orlicz spaces $L^{\Psi}(M)$ live inside $(L^{\infty} + L^{1})(A, \tau_{A})$, and try to extract the action from that.

Theorem

Let $T : M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- T(ar(x)b) = ar(T(x))b = for all a, b ∈ B where B is the von Noumann subalgebra genorated by all λ(s), s ∈ R.
 T = σ₁² = σ₁² = T for all t ∈ k (P is the dual weight of v).
 T > 0 = T > 0.
- $0 \quad v \circ T \leq v \Rightarrow \hat{v} \circ \tilde{T} \leq \hat{v}.$

Theorem

Let $T: M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- $\widetilde{T}(a\pi(x)b) = a\pi(T(x))b$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
- 2) $\widetilde{T} \circ \sigma_t^{\widehat{\nu}} = \sigma_t^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
- $T \geq 0 \Rightarrow \widetilde{T} \geq 0.$

Theorem

Let $T: M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- $\widetilde{T}(a\pi(x)b) = a\pi(T(x))b$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
- *T̃* ∘ σ_t^{*ν̃*} = σ_t^{*ν̃*} ∘ *T̃* for all t ∈ ℝ (*ν̃* is the dual weight of *ν*). *T* > 0 ⇒ *T̃* > 0.

Theorem

Let $T: M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- $\widetilde{T}(a\pi(x)b) = a\pi(T(x))b$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
- 2) $\widetilde{T} \circ \sigma_t^{\widehat{\nu}} = \sigma_t^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
- $T \geq 0 \Rightarrow \widetilde{T} \geq 0.$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Theorem

Let $T: M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- $\widetilde{T}(a\pi(x)b) = a\pi(T(x))b$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
- 2) $\widetilde{T} \circ \sigma_t^{\widehat{\nu}} = \sigma_t^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
- $T \geq 0 \Rightarrow \widetilde{T} \geq 0.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

Let $T: M \to M$ be a completely bounded normal map such that $T \circ \sigma_t^{\nu} = \sigma_t^{\nu} \circ T$, $t \in \mathbb{R}$. Then the prescription $\widetilde{T}(\lambda(s)\pi(x)) = \lambda(s)\pi(T(x))$ ($x \in M, s \in \mathbb{R}$ generates a unique bounded normal extension \widetilde{T} of T to $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$ with $\|T\| = \|\widetilde{T}\|$. Moreover:

- $\widetilde{T}(a\pi(x)b) = a\pi(T(x))b$ for all $a, b \in B$ where B is the von Neumann subalgebra generated by all $\lambda(s), s \in \mathbb{R}$.
- 2) $\widetilde{T} \circ \sigma_t^{\widehat{\nu}} = \sigma_t^{\widehat{\nu}} \circ \widetilde{T}$ for all $t \in \mathbb{R}$ ($\widehat{\nu}$ is the dual weight of ν).
- $T \geq 0 \Rightarrow \widetilde{T} \geq 0.$
- $v \circ T \leq \nu \Rightarrow \widehat{\nu} \circ \widetilde{T} \leq \widehat{\nu}.$

Real interpolation to the rescue

Corollary

Let T and T be as before. If each of (1)-(4) holds, then $\tau_A \circ T \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^v} \mathbb{R}$. The map T then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Real interpolation to the rescue

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.
Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

Corollary

Let T and \widetilde{T} be as before. If each of (1)-(4) holds, then $\tau_A \circ \widetilde{T} \leq \tau_A$ where τ_A is the canonical trace on $A = M \rtimes_{\sigma^{\nu}} \mathbb{R}$. The map \widetilde{T} then also canonically induces a map on the space $(L^{\infty} + L^1)(A, \tau_A)$.

Proof The first claim follows by applying some ideas from Pedersen and Takesaki's seminal paper. For the second claim apply Yeadon's ergodic result to see that \tilde{T} induces a bounded map on $L^1(A, \tau_A)$, and then apply real interpolation to get the conclusion.

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} rac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\overline{\beta}_{L^{\Psi}} < 1$, then $L^{\psi}(M) \subset (L^{\infty} + L^{1})(A, \tau_{A})$ (isomorphically).

Moreover $L^{\psi}(M)$ is an invariant subspace of the extension T of T to $(L^{\infty} + L^{1})(A, \tau_{A})$. This class includes $L^{\cosh -1}(M)$!! (The space of regular observables.)

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

If $\overline{\beta}_{L^{\Psi}} < 1$, then $L^{\psi}(M) \subset (L^{\infty} + L^{1})(A, \tau_{A})$ (isomorphically).

Moreover $L^{\psi}(M)$ is an invariant subspace of the extension T of T to $(L^{\infty} + L^{1})(A, \tau_{A})$. This class includes $L^{\cosh -1}(M)$!! (The space of regular observables.)

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Definition

Let φ_{ψ} be the fundamental function of the space $L^{\Psi}(0,\infty)$, and let $M_{\psi}(t) = \sup_{s>0} \frac{\varphi_{\Psi}(st)}{\varphi_{\Psi}(s)}$. We call the quantity

$$\overline{\beta}_{L^{\Psi}} = \inf_{1 < t} \frac{\log M_{\psi}(s)}{\log s}$$

the upper fundamental index of $L^{\Psi}(M)$.

Proposition

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh 1}(M)) are respectively homes for good states and good observables of this system.

 There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh -1}(M) of regular observables.

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh -1}(M)) are respectively homes for good states and good observables of this system.
- There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh -1}(M) of regular observables.

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh -1}(M)) are respectively homes for good states and good observables of this system.
- There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh -1}(M) of regular observables.

・ロト ・個 ト ・ ヨト ・ ヨト … ヨ

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh-1}(M)) are respectively homes for good states and good observables of this system.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

 There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh -1}(M) of regular observables.

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh-1}(M)) are respectively homes for good states and good observables of this system.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

 There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh -1}(M) of regular observables.

Based on the preceding analysis we may propose the following framework as an axiomatic foundation for Quantum Statistical Mechanics:

- Corresponding to each quantum system there is a pair (M, ν) (where M is a von Neumann algebra and ν an associated faithful normal semifinite weight) describing the system.
- The pair of spaces (Llog(L + 1)(M), L^{cosh-1}(M)) are respectively homes for good states and good observables of this system.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ </p>

 There is a Dirichlet form & (representing an energy potential) describing Markov dynamics on the space L^{cosh-1}(M) of regular observables.

Selected References

- LE Labuschagne and WA Majewski, Maps on Noncommutative Orlicz Spaces, *Illinois J Math* 55 (3) (2011), 1053-1081.
- 2. LE Labuschagne, A crossed product approach to Orlicz spaces, *Proc LMS* **107** (3) (2013), 965-1003.
- WA Majewski and LE Labuschagne, On applications of Orlicz Spaces to Statistical Physics, *Annales Henri Poincaré* 15 (2014), 1197-1221.
- 4. LE Labuschagne and WA Majewski, Quantum dynamics on Orlicz spaces, arXiv:1605.01210 [math-ph].
- 5. LE Labuschagne and WA Majewski, Integral and differential structures for quantum field theory, arXiv:1702.00665[math-ph].

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ