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Orlicz function: A convex function ¢ : [0, c0) — [0, o] satisfying
@ ¢(0) =0 and limy_. ¥(u) = oo,
@ neither identically zero nor infinite valued on all of (0, c0),
@ left continuous at by, = sup{u > 0 : (u) < oo}.

Complementary Orlicz function: ¢*(u) = sup,-o(uv — ¢(v)). s
W
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Defining Orlicz spaces

L0 the space of all measurable functions on o-finite (Q, X, m).

Definition (Orlicz space corresponding to )

f € L0 belongs to LY < v()\|f]) is integrable for some
A= X\(f)>0.

Luxemburg-Nakano norm: ||f[|, = inf{A > 0 : ||sp(|f|/A)[]1 < 1}.
Orlicz norm: ||f(|$ = sup{| [ofgdm| : g € L*", ||g]ly~ < 1}.
Notational convention: L¥ (Luxemburg norm); L (Orlicz norm).

Kéthe duality: A measurable function 7 belongs to Ly«(X, X, v)
if and only if fg € L' for every g € LY. ()



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)'/P.



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)'/P.



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)!/.
@ Similarly LY (My(C), Tr) is Mp(C) equipped with the norm
lallv = inf{A > 0: Tr(s(|al/A)) < 1}.



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)!/.
@ Similarly LY (My(C), Tr) is Mp(C) equipped with the norm
lallv = inf{A > 0: Tr(s(|al/A)) < 1}.



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)!/.
@ Similarly LY (My(C), Tr) is Mp(C) equipped with the norm
lallv = inf{A > 0: Tr(s(|al/A)) < 1}.

J von Neumann, Some matrix inequalities and metrization of
matrix space, Tomsk Univ Rev 1(1937), 286-300



Mildly noncommutative function spaces

New norms on M,(C)

Example: Replace L> by M,(C), and [ -dv by Tr, and see what
happens:
@ [P(M,(C), Tr) is just M,(C) equipped with the norm
Tr(|alP)!/.
@ Similarly LY (My(C), Tr) is Mp(C) equipped with the norm
lallv = inf{A > 0: Tr(s(|al/A)) < 1}.

J von Neumann, Some matrix inequalities and metrization of
matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but
using a semifinite von Neumann algebra M and an associated
fns trace 7 instead of (M,(C), Tr), the theory still works.
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Orlicz and LP-spaces for semifinite algebras

@ M a von Neumann algebra, equipped with a faithful normal
semifinite trace 7o = 7 : M™ — [0, o).
Thatis 7 : M — [0, oc] is an affine functional satisfying:
Faithful: 7(a) = 0 & a =0 for every a € M™.
Normal: sup7(a,) = T(sup a,) for every increasing net.
Semifinite: span{a € M* : 7(a) < oo} is weak* dense in M.
Tracial property: r(aa*) = 7(a*a) for all a € M.
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Orlicz and LP-spaces for semifinite algebras

@ M a von Neumann algebra, equipped with a faithful normal
semifinite trace 7oy = 7 : M™ — [0, o).

e Mthe algebra of ry-measurable operators: operators
affiliated to M, such that for every « > 0 there exists a
projection e € M with 7(e) < e, and a(1 — e) € M.

M plays the role of the completion of L> under the topology of
convergence in measure.

f € Mbelongs to LP(M, 7) < (|f|P) < oo with [|f]|, = (|f|P)!/P.

feM belongs to LY(M, 7) < there exists 5 > 0 so that a
v(glf]) € L'(M, 7). U]
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Applications

Why bother?

Let 7 be a fixed element (state) in
M,={fel':f>0,[fdv=1} (X)=1).

Definition (Pistone-Sempi, 1995)

A measurable function u is said to be a regular observable (with
respect to f) if the function u(t) = [ ef.dv exists in a
neighbourhood of 0, and [ ufdv = 0.

Theorem (Pistone-Sempi, 1995)

The regular observables correspond to the closed subspace of
Leosh=1( X, ¥, f.dv) of zero expectation elements.
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States with entropy 1

Inspired by the controversial work of Boltzmann on the
dynamics of rarefied gases [1872], von Neumann expressed
entropy as Tr(plog(p)) in the context of B(H) (here p is a norm
1 element of .71 (H) T representing the state of the system).

Problem: For the specific case of B(H) one gets a respectable
theory for the action of this quantity on .7 (H)*. For more
general tracial von Neumann algebras M, the quantity
7(plog(p)) (p € L'(M, 1)*) can be extremely badly behaved
with respect to the L'-topology. So B(H) is somewhat
exceptional!!
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Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and f € L' n Llog(L + 1)(M, 1)
with f > 0. Then 7(flog(f + €)) is well defined for any € > 0.
Moreover

7(flogf)

is bounded above, and if in addition f € L1/2, it is also bounded
from below.

Here Llog(L + 1)(M, 1) is the Orlicz space corresponding to the
function W(t) = tlog(t+ 1).

(o
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States with entropy 2

So why does the space Llog(L+ 1)(M, )N L' (M, 1) not feature
in the context of the pair (7 (H), B(H))?

In the case of M = B(H), 7 = Tr, we have that

Llog(L +1)(M,7) N L'\(M,7) = " (H)
Leosh=1(\, 7) 0 L(M, 7) = B(H)

Elementary quantum mechanics remains intact!

What is required is more care in extending the B(H) picture to
more general von Neumann algebras.
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Implications

Achieved results: L°"~1(M, 7) is a home for regular quantum
observables, and Llog(L + 1)(M, 1) N L'(M, ) a home for
states with good entropy.

Deeper truths: The space L' ~1(M, ) is actually an
isomorphic copy of the Banach space dual of

Llog(L + 1)(M, ). So up to isomorphism,

(Llog(L + 1)(M, 7), LN =1(M, 7)) is a dual pair.
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A=L>®(X,XZ,v)® L®(R) “enlarge” M by passing to
A=Mx,R

0s(f ® g)(x,t) = f(x)g(t —s) a dual action of R on A in the
form of a group of *-auto-
morphisms {6s} (s € R)

[-dv® [p-eldt a canonical trace 74 on A
characterised by 740 05 = e S74.

(Haagerup, 1979): For any measurable function f on X (finite
v-almost everywhere) we have that

feelPeA o felP(X Z,v).
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The strange ways of type Il LP spaces

Commutative Quantum
A=L>®(X,XZ,v)® L®(R) “enlarge” M by passing to
A=Mx,R

0s(f ® g)(x,t) = f(x)g(t —s) a dual action of R on A in the
form of a group of *-auto-
morphisms {6s} (s € R)

[-dv® [p-eldt a canonical trace 74 on A
characterised by 740 05 = e S74.

(Haagerup, 1979): By analogy with the classical setting, we
may define

LP(M)={ac A:fs(a) = e */Paforall s € R}.
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Constructing A= M %, R

@ Replace H with L2(R, H).

@ The map a — w(a) defines and embedding of M into
B(L3(R,H)), where (r(a)(n))(t) = o ,(a)(n(t)) for all
ac Mandalln € L2(R,H).

@ Throw in some shift operators (A(s)(n))(t) = n(t — s),

@ and generate the von Neumann algebra
A= M x, R c B(L?(R,H)) from these two classes of
maps.

It turns out that for each s we have that A(s) = hs where his
the positive operator h = ddT‘;\ affiliated to A.
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Type Il Orlicz spaces

Haagerup’s construction of LP-spaces for type 11l von Neumann
algebras can be extended to also allow for the construction of
Orlicz spaces. (L, 2014)

The classical roots of the construction: Let M = L*°(X, X, v),
and let A= L*(X, X, v) ® L*(R) be as before.

Given an Orlicz function ¥, define ¢y : [0, 00) — [0, c0) by

]
pw(t) = TE=TEYOR

For any measurable function f on X, we then have that

foeuEe)eA < felY(X Tv).
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Defining type Il Orlicz spaces

Given a von Neumann algebra M with fns weight v,
@ let 7 be the dual weight on the crossed product
A=Mx, R,
@ let h be the positive operator h = % affiliated to A,
@ and let further ¢* be the fundamental function of the Kéthe
dual of L¥(0, c0).
Then a 74-measurable operator a € A belongs to LY (M) < for
every s € R we have that 65(a) = e—sd;/zad;/2 where ds is the
operator ds = p*(e~5h)~1¢*(h).

The above definition was first proposed in [LM2017] where it
was shown to be equivalent to the one originally given in
[L2013]. L)
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Emergent challenge

Challenge: Given a Markov map T with a canonical action on
M and L'(M), can we show that it has a nice action on a large
enough class of Orlicz spaces? First pause to see what is
known.

Theorem (Yeadon 1977; HJX 2010)

Let T : M — M be a positive map for which there exists some
Cq > 0 such that v(T(x)) < Cyv(x) for all x € M*. Then for
each1 < p < oo, T canonically extends to a positive bounded
map Ty : LP(M) — LP(M) such that || T,|| < CX ('/P).cl/P
where Coo = || T(1)||co-

Problem: The proof uses complex interpolation. To date a
complex interpolation does not work for quantum Orlicz spaces. ¥
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An alternative strategy

Challenge 2: Can we overcome the lack of access to complex
interpolation, by passing to a smaller class of Markov maps,
namely the CP Markov map? If so how?

Idea:

@ Show that under acceptable assumptions, T: M — M
extendstoamap Ton A= M x, R,

@ and from there to a map on (L™ + L")(A, 74).

@ Then see if any of the Orlicz spaces LY (M) live inside
(L= + L")(A,74), and try to extract the action from that.
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HJX extension result

Theorem

Let T : M — M be a completely bounded normal map such that
Toof =0foT, tecR. Then the prescription

?(A(s)w(x)) = \(s)m(T(x)) (x € M, s € R generates a unique
bounded normal extension T of T to A= M x v R with

|T| = || T||. Moreover:

@ T(an(x)b) = an(T(x))b foralla,b € B where B is the

von Neumann subalgebra generated by all \(s), s € R.
Q Tool=oVoT forallt e R (v is the dual weight of v).
Q@T7>0=T2>0.

Q rvoT<v=voT<U7.

(o
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Real interpolation to the rescue

Let T and T be as before. If each of (1)-(4) holds, then

Tao T < 75 where 74 is the canonical trace on A = M x,» R.
The map T then also canonically induces a map on the space
(L + LNY(A, 74).

Proof The first claim follows by applying some ideas from
Pedersen and Takesaki's seminal paper. For the second claim
apply Yeadon’s ergodic result to see that T induces a bounded
map on L'(A, 74), and then apply real interpolation to get the
conclusion.

(o
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Definition

Let o, be the fundamental function of the space LY (0, ~), and

let My (t) = SUPs-g “(’;“(U((sst)). We call the quantity

the upper fundamental index of LY (M).

Proposition

If v < 1, then LY (M) C (L>= + L')(A, 7a) (isomorphically).
Moreover LY (M) is an invariant subspace of the extension T of
T to (L + L") (A, 7a).
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Markov dynamics

Definition
Let o, be the fundamental function of the space LY (0, ~), and

let My (t) = SUPs-g “(’;“(U((sst)). We call the quantity

the upper fundamental index of LY (M).

Proposition

If Bpw < 1, then LY(M) C (L= + L")(A, 74) (isomorphically).
Moreover LY (M) is an invariant subspace of the extension T of
T to (L™ + L')(A, Ta). This class includes L'~ (M)!! (The
space of regular observables.)

(o
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The emergent picture

Based on the preceding analysis we may propose the following
framework as an axiomatic foundation for Quantum Statistical
Mechanics:

@ Corresponding to each quantum system there is a pair
(M, v) (where M is a von Neumann algebra and v an
associated faithful normal semifinite weight) describing the
system.

@ The pair of spaces (Llog(L + 1)(M), L =1(M)) are
respectively homes for good states and good observables
of this system.

@ There is a Dirichlet form & (representing an energy

potential) describing Markov dynamics on the space
Leosh=1(M) of regular observables.
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