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Classical Orlicz spaces

Orlicz functions

Orlicz function: A convex function ψ : [0,∞)→ [0,∞] satisfying
ψ(0) = 0 and limu→∞ ψ(u) =∞,
neither identically zero nor infinite valued on all of (0,∞),
left continuous at bψ = sup{u > 0 : ψ(u) <∞}.

Complementary Orlicz function: ψ∗(u) = supv>0(uv − ψ(v)).
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Classical Orlicz spaces

Defining Orlicz spaces

L0 the space of all measurable functions on σ-finite (Ω,Σ,m).

Definition (Orlicz space corresponding to ψ)

f ∈ L0 belongs to Lψ ⇔ ψ(λ|f |) is integrable for some
λ = λ(f ) > 0.

Luxemburg-Nakano norm: ‖f‖ψ = inf{λ > 0 : ‖ψ(|f |/λ)‖1 ≤ 1}.

Orlicz norm: ‖f‖Oψ = sup{|
∫

Ωfg dm| : g ∈ Lψ
∗
, ‖g‖ψ∗ ≤ 1}.

Notational convention: Lψ (Luxemburg norm); Lψ (Orlicz norm).

Köthe duality: A measurable function f belongs to Lψ∗(X ,Σ, ν)
if and only if fg ∈ L1 for every g ∈ Lψ.
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Mildly noncommutative function spaces

New norms on Mn(C)

Example: Replace L∞ by Mn(C), and
∫
·dν by Tr, and see what

happens:
Lp(Mn(C),Tr) is just Mn(C) equipped with the norm
Tr(|a|p)1/p.
Similarly LΨ(Mn(C),Tr) is Mn(C) equipped with the norm
‖a‖Ψ = inf{λ > 0 : Tr(ψ(|a|/λ)) ≤ 1}.

J von Neumann, Some matrix inequalities and metrization of
matrix space, Tomsk Univ Rev 1(1937), 286-300

Upping the ante: If we play essentially the same game but
using a semifinite von Neumann algebra M and an associated
fns trace τ instead of (Mn(C),Tr), the theory still works.
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Mildly noncommutative function spaces

Orlicz and Lp-spaces for semifinite algebras

M a von Neumann algebra, equipped with a faithful normal
semifinite trace τM = τ : M+ → [0,∞].

M̃ the algebra of τM -measurable operators: operators
affiliated to M, such that for every ε > 0 there exists a
projection e ∈ M with τ(e) ≤ ε, and a(1− e) ∈ M.

M̃ plays the role of the completion of L∞ under the topology of
convergence in measure.

f ∈ M̃ belongs to Lp(M, τ)⇔ τ(|f |p) <∞ with ‖f‖p = τ(|f |p)1/p.

f ∈ M̃ belongs to LΨ(M, τ)⇔ there exists β > 0 so that
Ψ(β|f |) ∈ L1(M, τ).
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f ∈ M̃ belongs to LΨ(M, τ)⇔ there exists β > 0 so that
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Applications

Why bother?

Let f be a fixed element (state) in
Mν = {f ∈ L1 : f > 0,

∫
f dν = 1} (ν(X ) = 1).

Definition (Pistone-Sempi, 1995)
A measurable function u is said to be a regular observable (with
respect to f ) if the function û(t) =

∫
etuf .dν exists in a

neighbourhood of 0, and
∫

u fdν = 0.

Theorem (Pistone-Sempi, 1995)
The regular observables correspond to the closed subspace of
Lcosh−1(X ,Σ, f .dν) of zero expectation elements.
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Applications

States with entropy 1

Proposition (L, Majewski; 2014)

Let M be a semifinite algebra and f ∈ L1 ∩ L log(L + 1)(M, τ)
with f ≥ 0. Then τ(f log(f + ε)) is well defined for any ε > 0.
Moreover

τ(f log f )

is bounded above, and if in addition f ∈ L1/2, it is also bounded
from below.

Here L log(L + 1)(M, τ) is the Orlicz space corresponding to the
function Ψ(t) = t log(t + 1).
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dynamics of rarefied gases [1872], von Neumann expressed
entropy as Tr(ρ log(ρ)) in the context of B(H) (here ρ is a norm
1 element of S 1(H)+ representing the state of the system).

Problem: For the specific case of B(H) one gets a respectable
theory for the action of this quantity on S 1(H)+. For more
general tracial von Neumann algebras M, the quantity
τ(ρ log(ρ)) (ρ ∈ L1(M, τ)+) can be extremely badly behaved
with respect to the L1-topology. So B(H) is somewhat
exceptional!!
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Applications

States with entropy 2

So why does the space L log(L + 1)(M, τ)∩ L1(M, τ) not feature
in the context of the pair 〈S 1(H),B(H)〉?

In the case of M = B(H), τ = Tr, we have that

L log(L + 1)(M, τ) ∩ L1(M, τ) = S 1(H)
Lcosh−1(M, τ) ∩ L∞(M, τ) = B(H)

.

Elementary quantum mechanics remains intact!

What is required is more care in extending the B(H) picture to
more general von Neumann algebras.
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Applications

Implications

Achieved results: Lcosh−1(M, τ) is a home for regular quantum
observables, and L log(L + 1)(M, τ) ∩ L1(M, τ) a home for
states with good entropy.

Deeper truths: The space Lcosh−1(M, τ) is actually an
isomorphic copy of the Banach space dual of
L log(L + 1)(M, τ). So up to isomorphism,
〈L log(L + 1)(M, τ),Lcosh−1(M, τ)〉 is a dual pair.



Applications

Implications

Achieved results: Lcosh−1(M, τ) is a home for regular quantum
observables, and L log(L + 1)(M, τ) ∩ L1(M, τ) a home for
states with good entropy.

Deeper truths: The space Lcosh−1(M, τ) is actually an
isomorphic copy of the Banach space dual of
L log(L + 1)(M, τ). So up to isomorphism,
〈L log(L + 1)(M, τ),Lcosh−1(M, τ)〉 is a dual pair.



Wildly noncommutative spaces

The strange ways of type III Lp spaces

Commutative Quantum
A = L∞(X ,Σ, ν)⊗ L∞(R) “enlarge” M by passing to

A = M oν R

θs(f ⊗ g)(x , t) = f (x)g(t − s) a dual action of R on A in the
form of a group of *-auto-
morphisms {θs} (s ∈ R)∫

·dν ⊗
∫
R ·e

−tdt a canonical trace τA on A
characterised by τA ◦ θs = e−sτA.
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Commutative Quantum

A = L∞(X ,Σ, ν)⊗ L∞(R) “enlarge” M by passing to
A = M oν R

θs(f ⊗ g)(x , t) = f (x)g(t − s) a dual action of R on A in the
form of a group of *-auto-
morphisms {θs} (s ∈ R)∫

·dν ⊗
∫
R ·e

−tdt a canonical trace τA on A
characterised by τA ◦ θs = e−sτA.

(Haagerup, 1979): For any measurable function f on X (finite
ν-almost everywhere) we have that

f ⊗ e(·)/p ∈ Ã ⇔ f ∈ Lp(X ,Σ, ν).
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The strange ways of type III Lp spaces
Commutative Quantum

A = L∞(X ,Σ, ν)⊗ L∞(R) “enlarge” M by passing to
A = M oν R

θs(f ⊗ g)(x , t) = f (x)g(t − s) a dual action of R on A in the
form of a group of *-auto-
morphisms {θs} (s ∈ R)∫

·dν ⊗
∫
R ·e

−tdt a canonical trace τA on A
characterised by τA ◦ θs = e−sτA.

(Haagerup, 1979): By analogy with the classical setting, we
may define

Lp(M) = {a ∈ Ã : θs(a) = e−s/pa for all s ∈ R}.



Wildly noncommutative spaces

Constructing A = M oν R

Replace H with L2(R,H).
The map a→ π(a) defines and embedding of M into
B(L2(R,H)), where (π(a)(η))(t) = σν−t (a)(η(t)) for all
a ∈ M and all η ∈ L2(R,H).
Throw in some shift operators (λ(s)(η))(t) = η(t − s),
and generate the von Neumann algebra
A = M oν R ⊂ B(L2(R,H)) from these two classes of
maps.

It turns out that for each s we have that λ(s) = his where h is
the positive operator h = dν̂

dτA
affiliated to A.
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Wildly noncommutative spaces

Type III Orlicz spaces

Haagerup’s construction of Lp-spaces for type III von Neumann
algebras can be extended to also allow for the construction of
Orlicz spaces. (L, 2014)

The classical roots of the construction: Let M = L∞(X ,Σ, ν),
and let A = L∞(X ,Σ, ν)⊗ L∞(R) be as before.

Given an Orlicz function Ψ, define ϕΨ : [0,∞)→ [0,∞) by

ϕΨ(t) =
1

Ψ−1(1/t)
.

For any measurable function f on X , we then have that

f ⊗ ϕΨ(e(·)) ∈ Ã ⇔ f ∈ LΨ(X ,Σ, ν).
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Wildly noncommutative spaces

Defining type III Orlicz spaces

Given a von Neumann algebra M with fns weight ν,
let ν̂ be the dual weight on the crossed product
A = M oν R,
let h be the positive operator h = dν̂

dτA
affiliated to A,

and let further ϕ∗ be the fundamental function of the Köthe
dual of LΨ(0,∞).

Then a τA-measurable operator a ∈ Ã belongs to LΨ(M)⇔ for
every s ∈ R we have that θs(a) = e−sd1/2

s ad1/2
s where ds is the

operator ds = ϕ∗(e−sh)−1ϕ∗(h).

The above definition was first proposed in [LM2017] where it
was shown to be equivalent to the one originally given in
[L2013].
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every s ∈ R we have that θs(a) = e−sd1/2

s ad1/2
s where ds is the

operator ds = ϕ∗(e−sh)−1ϕ∗(h).

The above definition was first proposed in [LM2017] where it
was shown to be equivalent to the one originally given in
[L2013].



Quantum Orlicz dynamics

Emergent challenge

Challenge: Given a Markov map T with a canonical action on
M and L1(M), can we show that it has a nice action on a large
enough class of Orlicz spaces? First pause to see what is
known.

Theorem (Yeadon 1977; HJX 2010)
Let T : M → M be a positive map for which there exists some
C1 > 0 such that ν(T (x)) ≤ C1ν(x) for all x ∈ M+. Then for
each 1 ≤ p <∞, T canonically extends to a positive bounded
map Tp : Lp(M)→ Lp(M) such that ‖Tp‖ ≤ C1−(1/p)

∞ .C1/p
1

where C∞ = ‖T (1)‖∞.

Problem: The proof uses complex interpolation. To date
complex interpolation does not work for quantum Orlicz spaces.
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Quantum Orlicz dynamics

An alternative strategy

Challenge 2: Can we overcome the lack of access to complex
interpolation, by passing to a smaller class of Markov maps,
namely the CP Markov map? If so how?

Idea:
Show that under acceptable assumptions, T : M → M
extends to a map T̃ on A = M oν R,
and from there to a map on (L∞ + L1)(A, τA).
Then see if any of the Orlicz spaces LΨ(M) live inside
(L∞ + L1)(A, τA), and try to extract the action from that.
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Quantum Orlicz dynamics

HJX extension result

Theorem

Let T : M → M be a completely bounded normal map such that
T ◦ σνt = σνt ◦ T , t ∈ R. Then the prescription
T̃ (λ(s)π(x)) = λ(s)π(T (x)) (x ∈ M, s ∈ R generates a unique
bounded normal extension T̃ of T to A = M oσν R with
‖T‖ = ‖T̃‖. Moreover:

1 T̃ (aπ(x)b) = aπ(T (x))b for all a,b ∈ B where B is the
von Neumann subalgebra generated by all λ(s), s ∈ R.

2 T̃ ◦ σν̂t = σν̂t ◦ T̃ for all t ∈ R (ν̂ is the dual weight of ν).
3 T ≥ 0⇒ T̃ ≥ 0.
4 ν ◦ T ≤ ν ⇒ ν̂ ◦ T̃ ≤ ν̂.
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Quantum Orlicz dynamics

Real interpolation to the rescue

Corollary

Let T and T̃ be as before. If each of (1)-(4) holds, then
τA ◦ T̃ ≤ τA where τA is the canonical trace on A = M oσν R.
The map T̃ then also canonically induces a map on the space
(L∞ + L1)(A, τA).

Proof The first claim follows by applying some ideas from
Pedersen and Takesaki’s seminal paper. For the second claim
apply Yeadon’s ergodic result to see that T̃ induces a bounded
map on L1(A, τA), and then apply real interpolation to get the
conclusion.
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Quantum Orlicz dynamics

Markov dynamics

Definition

Let ϕψ be the fundamental function of the space LΨ(0,∞), and
let Mψ(t) = sups>0

ϕΨ(st)
ϕΨ(s) . We call the quantity

βLΨ = inf
1<t

log Mψ(s)

log s

the upper fundamental index of LΨ(M).

Proposition

If βLΨ < 1, then Lψ(M) ⊂ (L∞ + L1)(A, τA) (isomorphically).
Moreover Lψ(M) is an invariant subspace of the extension T̃ of
T to (L∞ + L1)(A, τA). This class includes Lcosh−1(M)!! (The
space of regular observables.)
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Quantum Orlicz dynamics

The emergent picture

Based on the preceding analysis we may propose the following
framework as an axiomatic foundation for Quantum Statistical
Mechanics:

Corresponding to each quantum system there is a pair
(M, ν) (where M is a von Neumann algebra and ν an
associated faithful normal semifinite weight) describing the
system.
The pair of spaces 〈L log(L + 1)(M),Lcosh−1(M)〉 are
respectively homes for good states and good observables
of this system.
There is a Dirichlet form E (representing an energy
potential) describing Markov dynamics on the space
Lcosh−1(M) of regular observables.
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