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Statement of Main Result

Theorem 1 (Characterization of Relative Weak Mixing).

Let A = (A, µ, α) be a W ∗-dynamical system and F = (F , λ, ϕ) a
modular subsystem of A. Then A is weakly mixing relative to F if
and only if A�F A′ is ergodic relative to F.
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W*-Dynamical Systems I

Theorem 1 (Characterization of Relative Weak Mixing).

Let A = (A, µ, α) be a W ∗-dynamical system and F = (F , λ, ϕ) a
modular subsystem of A. Then A is weakly mixing relative to F if
and only if A�F A′ is ergodic relative to F.

W*-dynamical system (A, µ, α) with

A von Neumann algebra (represented in its GNS form on GNS
Hilbert space H ≡ AΩ with cyclic separating & vector Ω)

µ faithful normal state (µ(a) = 〈Ω, aΩ〉)
α ∗-automorphism on A. (U : H → H U(aΩ) = α(a)Ω)

W*-dynamical modular subsystem of A (F , λ, ϕ) with

F von Neumann subalgebra of A

λ := µ|F
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W*-Dynamical Systems II

ϕ := α|F
F is globally invariant under modular group associated to µ
(Gives the existence of unique conditional expectation
D : A→ F such that λ ◦ D = µ. Additionally,

∀n ∈ Z αnD = Dαn.
∀a ∈ A D(a) = PaP where P : H → FΩ is the orthogonal
projection.

)

Additional Notation

Denote the GNS Hilbert space of F by Hλ.

Let J denote the modular conjugation operator associated to
the state µ and

j : B(H)→ B(H) : a→ Ja∗J.
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Relative Weak Mixing I

Theorem 1 (Characterization of Relative Weak Mixing).

Let A = (A, µ, α) be a W ∗-dynamical system and F = (F , λ, ϕ) a
modular subsystem of A. Then A is weakly mixing relative to F if
and only if A�F A′ is ergodic relative to F.

Definition 1.

Let D be the conditional expectation from A onto D. We call a
system A weakly mixing relative to the modular subsystem F if

lim
N→∞

1

N

N∑
n=1

λ (D (αn(a∗)b∗)D (bαn(a))) = 0 (1)

for all a, b ∈ A with D(a) = D(b) = 0.
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Joinings

Definition 2.

A joining of A and B is a state ω on the algebraic tensor product
A� B such that ω (a⊗ 1B) = µ(a), ω (1A ⊗ b) = ν(b) and
ω ◦ (α� β) = ω for all a ∈ A and b ∈ B.
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Relative Independent Joining I

A′ := (A′, µ′, α′)
∀b ∈ A′

µ′(b) := µ ◦ j(b)
α′(b) := j ◦ α ◦ j(b)
α′(b) = UbU∗

modular subsystem F̃ =
(
F̃ , λ̃, ϕ̃

)
of A′

F̃ := j(F ) ⊆ A′

λ̃ := µ̃|F̃
ϕ̃ := α̃|F̃

relatively independent joining of A and A′ over F
D̃ := j ◦ D ◦ j : A′ → F̃
δ : F � F̃ → B(H) linear extension of
F × F̃ → B(H) : (a, b) 7→ ab
Diagonal State ∆λ : F � F̃ → C for all c ∈ F � F̃
∆λ(c) := 〈Ω, δ(c)Ω〉
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Relative Independent Joining II

µ�λ µ
′ on A� A′ by

ω := µ�λ µ
′ := ∆λ ◦ (D � D̃). (2)

Relative Product system (of A and A′ over F)
A�F A′ := (A� A′, µ�λ µ′, α� α′)
We let W denote the unitary representation of α� α′ on the
GNS Hilbert space Hω

We let HW
ω denote the fixed point space of W .
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Relative Independent Joining III

Important Consequence: We can “embed” H (and, thus Hλ) into
the GNS Hilbert space Hω for (A� B, ω) :

πω(A⊗ 1)Ωω ≡ H.

(πω : A� B → B(Hω) is the GNS representation for
(A� B, ω)).

Hλ̃ = Hλ ≡ FΩ ⊆ H.
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Relative Ergodicity

Theorem 1 (Characterization of Relative Weak Mixing).

Let A = (A, µ, α) be a W ∗-dynamical system and F = (F , λ, ϕ) a
modular subsystem of A. Then A is weakly mixing relative to F if
and only if A�F A′ is ergodic relative to F.

Definition 3.

We say that A�F A′ is ergodic relative to the modular subsystem
F of A, if HW

ω ⊂ Hλ.
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Relative Ergodicity implies Relative Weak Mixing I

Proposition 4.

If A�F A′ is ergodic relative to F, then A is weakly mixing relative
to F.
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Relative Ergodicity implies Relative Weak Mixing II

Proof.

Let Q be the projection of Hω onto the fixed point space HW
ω

of W .

mean ergodic theorem: For all s, t ∈ A� A′,

lim
N→∞

1

N

N∑
n=1

ω(((α� α′)n(s))t)

= lim
N→∞

1

N

N∑
n=1

〈W nπω(s∗)Ωω, πω(t)Ωω〉

= 〈Qπω(s∗)Ωω, πω(t)Ωω〉
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Relative Ergodicity implies Relative Weak Mixing III

Proof (Cont.)

In particular, s = a⊗ (JaJ) and t = b⊗ (JbJ), where a, b ∈ A
and D(a) = 0 or D(b) = 0

lim
N→∞

1

N

N∑
n=1

ω(((α� α′)n(a⊗ (JaJ)))b ⊗ (JbJ))

= 〈Qπω((a⊗ (JaJ))∗)Ωω, πω(b ⊗ (JbJ))Ωω〉

Suppose D(a) = 0 (the case D(b) = 0 is similar). As
πω((a⊗ (JaJ))∗)Ωω ⊥ HW

ω we have Qπω(a⊗ (JaJ)∗)Ωω = 0.
Thus,
limN→∞

1
N

∑N
n=1 ω(((α� α′)n(a⊗ (JaJ)))b ⊗ (JbJ)) = 0
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Relative Ergodicity implies Relative Weak Mixing IV

Proof (Cont.)

Using the definition of ω = µ� µ′ we calculate

0 = lim
N→∞

1

N

N∑
n=1

ω(((α� α′)n(a⊗ (JaJ)))b ⊗ (JbJ))

= lim
N→∞

1

N

N∑
n=1

〈
Ω,D(αn(a)b)D̃(α′n(JaJ)JbJ)Ω

〉
= lim

N→∞

1

N

N∑
n=1

λ(D(αn(a)b)D(b∗αn(a∗))),

as required.
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Characterization of Relative Ergodicity of Rel. Ind. System

Proposition 5.

A�F A′ is ergodic relative to F if and only if for every s, t ∈ A�A′

lim
N→∞

1

N

N∑
n=1

ω(sτn(t)) = lim
N→∞

1

N

N∑
n=1

ω(E (s)τn(E (t))) (3)

where τ = α� α′ and E = D � D̃.
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Relative Weak mixing implies Relative Ergodicity I

Proposition 6.

Assume that µ is a trace. Then A�F A′ is ergodic relative to F if
and only if

lim
N→∞

1

N

N∑
n=1

λ(D (αn(a∗)b∗)D(bαn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(b)D(αn(a))) (4)

for all a, b ∈ A.
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Relative Weak mixing implies Relative Ergodicity II

Proposition 7.

If A is ergodic relative to F, then

lim
N→∞

1

N

N∑
n=1

µ(bαn(a)) = lim
N→∞

1

N

N∑
n=1

λ(D(b)αn(D(a)))

and, in particular both these limits exist, for all a, b ∈ A.
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Relative Weak mixing implies Relative Ergodicity III

Proposition 8.

The system A is weakly mixing relative to F if and only if

lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))− D(b)D(αn(a))|2

)
= 0

for all a, b ∈ A.

Corollary 9.

If A is weakly mixing relative to F, then A is ergodic relative to F.
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Relative Weak mixing implies Relative Ergodicity IV

Proposition 10.

Assume that µ is tracial and that A is weakly mixing relative to F.
Then A�F A′ is ergodic relative to F.
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Relative Weak mixing implies Relative Ergodicity V

Proof.

1 Proposition 8 gives us

lim
N→∞

1

N

N∑
n=1

λ
(
|D (bαn(a))− D(b)D(αn(a))|2

)
= 0

2 λ
(
|D (bαn(a))− D(b)D(αn(a))|2

)
= λ(D(αn(a∗)b∗)D(bαn(a)) (5)

− λ(D(αn(a∗)b∗)D(b)D(αn(a))) (6)

−λ(D(αn(a∗))D(b∗)D(bαn(a))) (7)

+ λ(D(αn(a∗))D(b∗)D(b)D(αn(a))). (8)
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Relative Weak mixing implies Relative Ergodicity VI

Proof.

5 Eq. (7): λ(D(αn(a∗))D(b∗)D(bαn(a)))

= λ(D[D(b∗)bαn(a)D(αn(a∗))]) = µ(D(b∗)bαn(aD(a∗))).

Now,

lim
N→∞

1

N

N∑
n=1

µ(D(b∗)bαn(aD(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(D(b∗)D(b)αn(D(a)D(a∗))) (9)

(Weak mixing assumption implies that A ergodic relative to F
(Corollary 9). Proposition 7 gives the equality of limits).
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Relative Weak mixing implies Relative Ergodicity VII

Proof.

7 We wish to show that the limit of the ergodic average of Eq.
(5), and (9) are equal. (This will give us the required result
using Proposition 6). We do this by showing that the limits of
the ergodic averages of Eqs (6) and (8) are equal.
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Relative Weak mixing implies Relative Ergodicity VIII

Proof.

8 Eq (6):

λ(D(αn(a∗)b∗)D(b)D(αn(a))) = λ(D[αn(a∗)b∗D(b)D(αn(a))])

= µ(αn(a∗)b∗D(b)D(αn(a))) = µ(b∗D(b)αn(D(a)a∗)).

Corollary 9 gives

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗)b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(D(b∗)D(b)αn(D(a)D(a∗))). (10)
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Relative Weak mixing implies Relative Ergodicity IX

Proof.

9 Eq (8):

lim
N→∞

1

N

N∑
n=1

λ(D(αn(a∗))D(b∗)D(b)D(αn(a)))

= lim
N→∞

1

N

N∑
n=1

λ(D[D(b∗)D(b)αn(aD(a∗))])

= lim
N→∞

1

N

N∑
n=1

µ(D(b∗)D(b)αn(aD(a∗)))

= lim
N→∞

1

N

N∑
n=1

λ(D(b∗)D(b)αn(D(a)D(a∗))

Last limit is equal to (10).
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